• Title/Summary/Keyword: vessel pressure

Search Result 1,355, Processing Time 0.027 seconds

Improvement and validation of aerosol models for natural deposition mechanism in reactor containment

  • Jishen Li ;Bin Zhang ;Pengcheng Gao ;Fan Miao ;Jianqiang Shan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2628-2641
    • /
    • 2023
  • Nuclear safety is the lifeline for the development and application of nuclear energy. In severe accidents of pressurized water reactor (PWR), aerosols, as the main carrier of fission products, are suspended in the containment vessel, posing a potential threat of radioactive contamination caused by leakage into the environment. The gas-phase aerosols suspended in the containment will settle onto the wall or sump water through the natural deposition mechanism, thereby reducing atmospheric radioactivity. Aiming at the low accuracy of the aerosol model in the ISAA code, this paper improves the natural deposition model of aerosol in the containment. The aerosol dynamic shape factor was introduced to correct the natural deposition rate of non-spherical aerosols. Moreover, the gravity, Brownian diffusion, thermophoresis and diffusiophoresis deposition models were improved. In addition, ABCOVE, AHMED and LACE experiments were selected to validate and evaluate the improved ISAA code. According to the calculation results, the improved model can more accurately simulate the peak aerosol mass and respond to the influence of the containment pressure and temperature on the natural deposition rate of aerosols. At the same time, it can significantly improve the calculation accuracy of the residual mass of aerosols in the containment. The performance of improved ISAA can meet the requirements for analyzing the natural deposition behavior of aerosol in containment of advanced PWRs in severe accident. In the future, further optimization will be made to address the problems found in the current aerosol model.

Proper Indication of Decompressive Craniectomy for the Patients with Massive Brain Edema after Intra-arterial Thrombectomy

  • Sang-Hyuk Im;Do-Sung Yoo;Hae-Kwan Park
    • Journal of Korean Neurosurgical Society
    • /
    • v.67 no.2
    • /
    • pp.227-236
    • /
    • 2024
  • Objective : Numerous studies have indicated that early decompressive craniectomy (DC) for patients with major infarction can be life-saving and enhance neurological outcomes. However, most of these studies were conducted by neurologists before the advent of intra-arterial thrombectomy (IA-Tx). This study aims to determine whether neurological status significantly impacts the final clinical outcome of patients who underwent DC following IA-Tx in major infarction. Methods : This analysis included 67 patients with major anterior circulation major infarction who underwent DC after IA-Tx, with or without intravenous tissue plasminogen activator. We retrospectively reviewed the medical records, radiological findings, and compared the neurological outcomes based on the "surgical time window" and neurological status at the time of surgery. Results : For patients treated with DC following IA-Tx, a Glasgow coma scale (GCS) score of 7 was the lowest score correlated with a favorable outcome (p=0.013). Favorable outcomes were significantly associated with successful recanalization after IA-Tx (p=0.001) and perfusion/diffusion (P/D)-mismatch evident on magnetic resonance imaging performed immediately prior to IA-Tx (p=0.007). However, the surgical time window (within 36 hours, p=0.389; within 48 hours, p=0.283) did not correlate with neurological outcomes. Conclusion : To date, early DC surgery after major infarction is crucial for patient outcomes. However, this study suggests that the indication for DC following IA-Tx should include neurological status (GCS ≤7), as some patients treated with early DC without considering the neurological status may undergo unnecessary surgery. Recanalization of the occluded vessel and P/D-mismatch are important for long-term neurological outcomes.

Analysis of fluctuations in ex-core neutron detector signal in Krško NPP during an earthquake

  • Tanja Goricanec;Andrej Kavcic;Marjan Kromar;Luka Snoj
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.575-600
    • /
    • 2024
  • During an earthquake on December 29th 2020, the Krško NPP automatically shutdown due to the trigger of the negative neutron flux rate signal on the power range nuclear instrumentation. From the time course of the detector signal, it can be concluded that the fluctuation in the detector signal may have been caused by the mechanical movement of the ex-core neutron detectors or the pressure vessel components rather than the actual change in reactor power. The objective of the analysis was to evaluate the sensitivity of the neutron flux at the ex-core detector position, if the detector is moved in the radial or axial direction. In addition, the effect of the core barrel movement and core inside the baffle movement in the radial direction were analysed. The analysis is complemented by the calculation of the thermal and total neutron flux gradient in radial, axial and azimuthal directions. The Monte Carlo particle transport code MCNP was used to study the changes in the response of the ex-core detector for the above-mentioned scenarios. Power and intermediate-range detectors were analysed separately, because they are designed differently, positioned at different locations, and have different response characteristics. It was found that the movement of the power range ex-core detector has a negligible effect on the value of the thermal neutron flux in the active part of the detector. However, the radial movement of the intermediate-range detector by 5 cm results in 7%-8% change in the thermal neutron flux in the active part of the intermediate-range detector. The analysis continued with an evaluation of the effects of moving the entire core barrel on the ex-core detector response. It was estimated that the 2 mm core barrel radial oscillation results in ~4% deviation in the power and intermediate-range detector signal. The movement of the reactor core inside baffle can contribute ~6% deviation in the ex-core neutron detector signal. The analysis showed that the mechanical movement of ex-core neutron detectors cannot explain the fluctuations in the ex-core detector signal. However, combined core barrel and reactor core inside baffle oscillations could be a probable reason for the observed fluctuations in the ex-core detector signal during an earthquake.

Azimuth Thruster Cavitation Test Apparatus Development and Cavitation Performance Study (아지무스 추진기 캐비테이션 시험 장치 개발 및 캐비테이션 성능 연구)

  • Jongwoo Ahn;Hanshin Seol;Hongseok Jeong;Youngha Park;Sanghwan Kim;Jungil Han
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.61 no.3
    • /
    • pp.161-169
    • /
    • 2024
  • In order to investigate cavitation performance for the azimuth thruster in Large Cavitation Tunnel (LCT), the cavitation test apparatus was designed and manufactured. Generally the model scale is determined by the pod dynamometer with about 70mm diameter. Recently as ships with azimuth thruster have become bigger, the problem of the model ship installation was occurred. The model ship with pod dynamometer couldn't be installed in the LCT test section. The cavitation test apparatus and technique which can conduct the cavitation test without pod dynamometer were developed. The cavitation tests were conducted in torque identity method instead of thrust identity method. The target ship with azimuth thruster is 18K LNG bunkering vessel. As the full-scale ship test was conducted, the model cavitation tests were conducted at the same operating conditions. The fluctuating pressure levels of the full-scale ship were compared to those of the model tests. Another model cavitation test was conducted in the foreign institute and the cavitation observation results were compared to those of LCT. Through the comparison with the existing results, it is thought that the cavitation test for the azimuth thruster can be conducted in torque identity method.

Analysis of control rod driving mechanism nozzle rupture with loss of safety injection at the ATLAS experimental facility using MARS-KS and TRACE

  • Hyunjoon Jeong;Taewan Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2002-2010
    • /
    • 2024
  • Korea Atomic Energy Research Institute (KAERI) has operated an integral effect test facility, the Advanced Thermal-Hydraulic Test Loop for Accident Simulation (ATLAS), with reference to the APR1400 (Advanced Power Reactor 1400) for tests for transient and design basis accidents simulation. A test for a loss of coolant accident (LOCA) at the top of the reactor pressure vessel (RPV) had been conducted at ATLAS to address the impact of the loss of safety injections (LSI) and to evaluate accident management (AM) actions during the postulated accident. The experimental data has been utilized to validate system analysis codes within a framework of the domestic standard problem program organized by KAERI in collaboration with Korea Institute of Nuclear Safety. In this study, the test has been analyzed by using thermal-hydraulic system analysis codes, MARS-KS 1.5 and TRACE 5.0 Patch 6, and a comparative analysis with experimental and calculation results has been performed. The main objective of this study is the investigation of the thermal-hydraulic phenomena during a small break LOCA at the RPV upper head with the LSI as well as the predictability of the system analysis codes after the AM actions during the test. The results from both codes reveal that overall physical behaviors during the accident are predicted by the codes, appropriately, including the excursion of the peak cladding temperature because of the LSI. It is also confirmed that the core integrity is maintained with the proposed AM action. Considering the break location, a sensitivity analysis for the nodalization of the upper head has been conducted. The sensitivity analysis indicates that the nodalization gave a significant impact on the analysis result. The result emphasizes the importance of the nodalization which should be performed with a consideration of the physical phenomena occurs during the transient.

Effects of Exercise Designed on Physiological Variables Physical Functions in the Elderly (맨손체조가 노인의 생리적 지수와 체력에 미치는 효과)

  • Min, Soon;Joo, Ae-Ran
    • Journal of Korean Biological Nursing Science
    • /
    • v.4 no.1
    • /
    • pp.71-83
    • /
    • 2002
  • The purpose of this study was to determine the effect of exercise designed on physiological variables, physical functions in the elderly. The research design used was the one group pre-post test quasi-experimental design. The subjects for this study were 23 elderly, who were conveniently assigned to experimental group. The experimental group were selected from G-elderly church club in G-city. The data were collected from March 5, 2001 to June 11, 2002, and analyzed by frequency, t-test using SPSS/PC program. The results of this study were summarized as follows ; 1) The heart rate in the experimental group show statistically significant improvement (t=2.316, p=0.030). 2) The systolic blood pressure & diastolic blood pressure in the experimental group show statistically significant improvement(t=2.277, p=0.033 & t=-2.989, p=0.007). 3) The peripheral vessel $O_2$ Saturation in the experimental group don't show statistically significant improvement(t=-1.096, p=0.285). 4) The physical function in the experimental group don't show statistically significant improvement(t=-0.746, p=0.464). After 15 weeks of exercise designed, it was shown that the program was effective to improve the physiological variables.

  • PDF

Static and Dynamic Analysis of Reinforced Concrete Axisymmetric Shell on the Elastic Foundation -Effect of Steel on the Dynamic Response- (탄성지반상에 놓인 철근 콘크리트 축대칭 쉘의 정적 및 동적 해석(IV) -축대칭 쉘의 동적 응답에 대한 철근의 영향을 중심으로-)

  • 조진구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.4
    • /
    • pp.106-113
    • /
    • 1997
  • Dynamic loading of structures often causes excursions of stresses well into the inelastic range, and the influence of the geometric changes on the dynamic response is also significant in many cases. Therefore, both material and geometric nonlinearity effects should be considered in case that a dynamic load acts on the structure. A structure in a nuclear power plant is a structure of importance which puts emphasis on safety. A nuclear container is a pressure vessel subject to internal pressure and this structure is constructed by a reinforced concrete or a pre-stressed concrete. In this study, the material nonlinearity effect on the dynamic response is formulated by the elasto-viscoplastic model highly corresponding to the real behavior of the material. Also, the geometrically nonlinear behavior is taken into account using a total Lagrangian coordinate system, and the equilibrium equation of motion is numerically solved by a central difference scheme. The constitutive relation of concrete is modeled according to a Drucker-Prager yield criterion in compression. The reinforcing bars are modeled by a smeared layer at the location of reinforcements, and the steel layer model under Von Mises yield criteria is adopted to represent an elastic-plastic behavior. To investigate the dynamic response of a nuclear reinforced concrete containment structure, the steel-ratios of 0, 3, 5 and 10 percent, are considered. The results obtained from the analysis of an example were summarized as follows 1. As the steel-ratio increases, the amplitude and the period of the vertical displacements in apex of dome decreased. The Dynamic Magnification Factor(DMF) was some larger than that of the structure without steel. However, the regular trend was not found in the values of DMF. 2. The dynamic response of the vertical displacement and the radial displacement in the dome-wall junction were shown that the period of displacement in initial step decreased with the steel-ratio increases. Especially, the effect of the steel on the dynamic response of radial displacement disapeared almost. The values of DMF were 1.94, 2.5, 2.62 and 2.66, and the values increased with the steel-ratio. 3. The characteristics of the dynamic response of radial displacement in the mid-wall were similar to that of dome-wall junction. The values of DMF were 1.91, 2.11, 2.13 and 2.18, and the values increased with the steel-ratio. 4. The amplitude and the period of the hoop-stresses in the dome, the dome-wall junction, and the mid-wall were shown the decreased trend with the steel-ratio. The values of DMF were some larger than those of the structure without steel. However, the regular trend was not found in the values of DMF.

  • PDF

NMDA Receptor and NO Mediate ET-1-Induced Behavioral and Cardiovascular Effects in Periaqueductal Gray Matter of Rats

  • Ryu, Jung-Su;Shin, Chang-Yell;Yang, Sung-Jun;Lee, Tai-Sang;La, Hyun-O;Song, Hyun-Ju;Yom, Yoon-Ki;Huh, In-Hoi;Sohn, Uy-Dong
    • Archives of Pharmacal Research
    • /
    • v.24 no.1
    • /
    • pp.64-68
    • /
    • 2001
  • Endothelin-1 (ET-1 ), a novel and potent vasoconstrictor in blood vessel, is known to have some functions in the rat central nervous system (CNS), In order to investigate the central functions of ET-1 , ET-1 was administered to the periaqueductal gray area (PAC) of anesthetized rats to induce barrel rolling and increase the arterial blood pressure (ABP). ET-1 had a modulatory effect on central cardiovascular and behavioral control. The selective N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 (3${u}m/ol/kg$, i.p.) blocked the ET-1 induced responses, and both the nitric oxide synthase (NOS) inhibitor L-NAME (N-nitro-L-arginine mIThyl-ester 1 nmol/rat) and the nitric oxide (NO) scavenger hemoglobin (15 nmol/rat) had similar effects in redtAcing the IT-1 (10 pmol/rat)-induced behavioral changes and ABP elevation. However, NO donor sodium nitroprusside (SNP 10${u}g$, 1${u}g/rat$) decreased the ET-1 induced ABP elevation, and recovered the ET-1 -induced barrel rolling effect that was reduced by MK-801. These results suggest that ET-1 might have neuromodulatory functions such as ABP elevation and barrel rolling induction in the PAG of the rats via the NMDA receptor and NO.

  • PDF

Changes in plant hydraulic conductivity in response to water deficit

  • Kim, Yangmin X.;Sung, Jwakyung;Lee, Yejin;Lee, Seulbi;Lee, Deogbae
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.35-35
    • /
    • 2017
  • How do plants take up water from soils especially when water is scarce in soils? Plants have a strategy to respond to water deficit to manage water necessary for their survival and growth. Plants regulate water transport inside them. Water flows inside the plant via (i) apoplastic pathway including xylem vessel and cell wall and (ii) cell-to-cell pathway including water channels sitting in cell membrane (aquaporins). Water transport across the root and leaf is explained by a composite transport model including those pathways. Modification of the components in those pathways to change their hydraulic conductivity can regulate water uptake and management. Apoplastic barrier is modified by producing Casparian band and suberin lamellae. These structures contain suberin known to be hydrophobic. Barley roots with more suberin content from the apoplast showed lower root hydraulic conductivity. Root hydraulic conductivity was measured by a root pressure probe. Plant root builds apoplastic barrier to prevent water loss into dry soil. Water transport in plant is also regulated in the cell-to-cell pathway via aquaporin, which has received a great attention after its discovery in early 1990s. Aquaporins in plants are known to open or close to regulate water transport in response to biotic and/or abiotic stresses including water deficit. Aquaporins in a corn leaf were opened by illumination in the beginning, however, closed in response to the following leaf water potential decrease. The evidence was provided by cell hydraulic conductivity measurement using a cell pressure probe. Changing the hydraulic conductivity of plant organ such as root and leaf has an impact not only on the speed of water transport across the plant but also on the water potential inside the plant, which means plant water uptake pattern from soil could be differentiated. This was demonstrated by a computer simulation with 3-D root structure having root hydraulic conductivity information and soil. The model study indicated that the root hydraulic conductivity plays an important role to determine the water uptake from soil with suboptimal water, although soil hydraulic conductivity also interplayed.

  • PDF

Study on the Detoxification of Lacca Sinica Exsiccata Written in the Classical Writings (건칠(乾漆)의 해독방법에 대한 문헌연구)

  • Lee Jae-Ho;Kim Young-Sam;Han Gyu-Jo;Kim Myoung-Dong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.5
    • /
    • pp.1169-1180
    • /
    • 2005
  • First, I read all the materials, including Dongeuibogam(Encyclopedia Medica Koreana), classical writings on Lacca sinica exsiccata, herbal writings on lacquer poison, and herbal books on how to treat lacquer poison. And then after 1 examined all the details on qi and taste of Lacca sinica exsiccata, its efficacy, detoxification, lacquer poison, and its effects on body symptom, 1 got the following results. The order of frequency that Lacca sinica exsiccata is used in Dongeuibogam is pressure-feeling, blood circulation, and insect biting. Its way of intake is not so much through herb-boiling or powdered medicine as through hand-made pills. When medicine is used in the form of pills, the Lacca sinica exsiccata is more included among other ingredients. When old doctors treated pressure-feeling in the chest, they mixed up other herbs, with not putting more emphasis on the efficacy of lacquer 010 doctors believed that toxicity of Lacca sinica exsiccata is not having its own poison, but having biased dominance in the use of its qE and taste. The way or detoxification or Lacca sinica exsiccata is used in the order of crab-boiled water, egg, Xanthoxylum piperitum, Perilla frutescens, Astar tataricus, a weeping willow, iron-tempered water, and Allium toberosum. Special point in detoxificating lacquer poison is that they used medicines for well-ciruculating pulmonary stream, medicines for promoting to urinate or discharge by helping large colons to move, medicines for making the lacquer scar small, medicines for helping digest, and medicines for improving vessel function in the poisoned area. With the above results, the more profound study, based on the crab-boiled water and egg, is expected to go on to increase the effect on the one hand, and to make the new way of lessening or removing the toxicity of lacquer with more safe use on the other hand.