• 제목/요약/키워드: very early strength

검색결과 188건 처리시간 0.032초

고강도 콘크리트의 단열온도상승에 관한 실험적 연구 (The Hydration Heat of High Strength Concrete)

  • 노재호;한정호;조일호;박연동;정재동;김진근
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1994년도 봄 학술발표회 논문집
    • /
    • pp.209-214
    • /
    • 1994
  • The heat of hydration of cement causes the intemal temperature rise at early age, particulay in massive concrete structures. As the results of the temperature rise and restraint condition, the thermal stress amy induce cracks in concrete. The prediction of the thermal stress is very important in design and consturction slages in order to control the cracks in mass concrete. In this study, the temperature rise of high strength concrete due to the heat of hydration is investigated. Test variables are type and content of binder. As the results, the temperature rise is imcreased with increasing cement content. However, the increament is decreased in higher cement comtnet range. Fly ash is effictive in the reduction of hydration heat.

  • PDF

Characteristic of Quenching Refrigerant for Heat Treatment Deformation Control of SM45C Steel

  • Lyu, Sung-Ki
    • Journal of Mechanical Science and Technology
    • /
    • 제16권5호
    • /
    • pp.647-654
    • /
    • 2002
  • This study deals with the characteristic of quenching refrigerant for heat treatment deformation control of SM45C steel. Heat-treatment deformation must be controlled for the progress of production parts for landing gear. Most of deformation is occurred on inconsistent cooling. The inconsistent cooling is caused by a property of quenching refrigerant. When a heated metal is deposited in the quenching refrigerant, the cooling speed is so slow in early period of cooling because of a steam-curtain. After additional cooling, the steam-curtain is destroyed. In this progress, the cooling speed is very fast. The object of this study is to control the deformation of heat-treatment for landing gear by improving the conditions of quenching. The cooling curves and cooling rates of water, oil and polymer solution are obtained and illustrated. From the characteristics of the quenching refrigerant, the effects of heat-treatments on thermal deformation and fatigue strength are also investigated.

해사의 기본성질과 잔골재로서의 이용 방안에 관한 연구 (A Study on the Characteristics of Beach Sand as Fine aggregate of Concrete)

  • 황경구;전현우
    • 한국농공학회지
    • /
    • 제18권4호
    • /
    • pp.4265-4273
    • /
    • 1976
  • 1. Fine aggregates of concrete are very important for the construction works and construction cost determination. Most of fine aggregates are from the river sand, but the amount of storage in the river side is steadily decreasing due to continuous construction works. Therefore, another source of fine aggregates is needed to meet increasied demand of sand. 2. Beach sand is a possible source of fine aggregates. But rust of steel bar is caused by CL-chemical of beach sand. Therefore, desalinization of beach sand is requested to get durable reinforced concrete. Economical methods of desalinization are as follows. (a) Flooding and drainage method. (b) Washing of beach sand with water supply and mixing. (c) Spreading of beach sand on the land and leaching by rain water for a few month. 3. Hardening of concrete with beach sand is accelerated due to salt, Thus early stage strength increase leads to make cracks. Also later stage strength decreases and durability becomes worse. By using appropriate admixture, the quality of concrete can be improved.

  • PDF

에폭시 수지 모르터의 강도 특성 (Strength Characteristics of Epoxy Resin Mortar)

  • 정규석;강신업
    • 한국농공학회지
    • /
    • 제24권3호
    • /
    • pp.92-99
    • /
    • 1982
  • The objective of this study was to investigate the compressive and bending strength characteristics of epoxy resin mortar, which is still in an early stage of its use and study in Korea. The results obtained are summarized as follows; 1. The compressive strengths of epoxy resin mortar after 1 day, 2 days and 3 days were gained 87%, 91% and 95%, respectively, in view of that of mortar at the age of 7 days. This result showed that the initial compressive strength within 1 day was very high. 2. The highest compressive strength of epoxy resin mortar was 914 kg/cm2 at the point of having the mixing ratio of one to two. It reached up to 3.7 times that of the normal portland cement mortar at the age of 28 days. 3. The bending strengths of epoxy resin mortar after 1 day, 2 days and 3 days came up to 88%, 93% and 97%, respectively, in comparing that of mortar at the age of 7 days. It was expressed to be simielar to the tendency of compressive strength. 4. The highest bending strength of epoxy resin mortar was 384 kg/cm2 at mixing ratio of one to two. It came up to as much as 6.5 times in comparing with that of the normal portland cement mortar at the age of 28 days. Therefore, the epoxy resin mortar would be effective for promoting the bending strength of structural members. 5. The regression equation between compressive and bending strength was obtained as follows; oo~=0.391 oc+27.54 (r=0.99) And the estimated value of bending strength was corresponded to about 44 per cent in comparing with that of the compressive strength.

  • PDF

Autogenous shrinkage of ultra high performance concrete considering early age coefficient of thermal expansion

  • Park, Jung-Jun;Yoo, Doo-Yeol;Kim, Sung-Wook;Yoon, Young-Soo
    • Structural Engineering and Mechanics
    • /
    • 제49권6호
    • /
    • pp.763-773
    • /
    • 2014
  • The recently developed Ultra High Performance Concrete (UHPC) displays outstanding compressive strength and ductility but is also subjected to very large autogenous shrinkage. In addition, the use of forms and reinforcement to confine this autogenous shrinkage increases the risk of shrinkage cracking. Accordingly, this study adopts a combination of shrinkage reducing admixture and expansive admixture as a solution to reduce the shrinkage of UHPC and estimates its appropriateness by evaluating the compressive and flexural strengths as well as the autogenous shrinkage according to the age. Moreover, the coefficient of thermal expansion known to experience sudden variations at early age is measured in order to evaluate exactly the autogenous shrinkage and the thermal expansion is compensated considering these measurements. The experimental results show that the compressive and flexural strengths decreased slightly at early age when mixing 7.5% of expansive admixture and 1% of shrinkage reducing admixture but that this decrease becomes insignificant after 7 days. The use of expansive admixture tended to premature the setting of UHPC and the start of sudden increase of autogenous shrinkage. Finally, the combined use of shrinkage reducing admixture and expansive admixture appeared to reduce effectively the autogenous shrinkage by about 47% at 15 days.

Experimental behavior of VHSC encased composite stub column under compression and end moment

  • Huang, Zhenyu;Huang, Xinxiong;Li, Weiwen;Mei, Liu;Liew, J.Y. Richard
    • Steel and Composite Structures
    • /
    • 제31권1호
    • /
    • pp.69-83
    • /
    • 2019
  • This paper investigates the structural behavior of very high strength concrete encased steel composite columns via combined experimental and analytical study. The experimental programme examines stub composite columns under pure compression and eccentric compression. The experimental results show that the high strength encased concrete composite column exhibits brittle post peak behavior and low ductility but has acceptable compressive resistance. The high strength concrete encased composite column subjected to early spalling and initial flexural cracking due to its brittle nature that may degrade the stiffness and ultimate resistance. The analytical study compares the current code methods (ACI 318, Eurocode 4, AISC 360 and Chinese JGJ 138) in predicting the compressive resistance of the high strength concrete encased composite columns to verify the accuracy. The plastic design resistance may not be fully achieved. A database including the concrete encased composite column under concentered and eccentric compression is established to verify the predictions using the proposed elastic, elastoplastic and plastic methods. Image-oriented intelligent recognition tool-based fiber element method is programmed to predict the load resistances. It is found that the plastic method can give an accurate prediction of the load resistance for the encased composite column using normal strength concrete (20-60 MPa) while the elastoplastic method provides reasonably conservative predictions for the encased composite column using high strength concrete (60-120 MPa).

적산온도법을 이용한 콘크리트 조기강도 예측에 관한 실험적 연구 (An Experimental Study on the Early Strength Prediction of Concrete by Maturity Method)

  • 권해원;배연기;김석일;지석원;이재삼;송인명
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 춘계 학술발표회 제20권1호
    • /
    • pp.753-756
    • /
    • 2008
  • 현재 국내에서는 후분양제도 도입등에 따라 공기단축이 중요관점으로 대두되고 있다. 철근콘크리트 공사에서 공기단축을 위해서는 콘크리트 타설 후 탈형시기가 매우 중요하게 작용하게 되는데 이를 위해 거푸집 탈형을 위한 조기압축강도 특성을 비파괴 시험 중 하나인 적산온도법을 일부 적용하고 있다. 적산온도법은 온도와 재령과의 관계로 압축강도를 추정하는 방법으로, 플라우만에 의해 한중기 매스콘크리트의 구조물강도를 예측하고자 연구된 것이다. 따라서, 조기압축강도양상과는 다소 다른 결과를 보일 수 있다. 또한 적산온도법은 시멘트의 종류 그리고 배합 등에 따라 온도의 영향이 다르게 적용될 수 있으므로, 이에 대한 연구가 필요한 실정이다. 따라서 본 실험적 연구에서는 조기강도 예측을 위해 결합재 OPC100%와 OPC80+BSC20%에 대해 W/B비를 32, 35, 38, 40%로 다양화하여, 양생환경을 온도 20도씨와 25도씨에 12, 14, 16, 18, 20, 22, 24, 36시간 동안 양생한 후 압축강도를 측정한 결과를 바탕으로 현재 국내에서 주로 사용하고 있는 적산온도법을 적용하여 그 상관관계를 살펴보도록 한다.

  • PDF

단차가 있는 철근콘크리트 슬래브의 구조성능 평가 실험 및 상세 제안 (Experimental Studies and Detailing Suggestion for Reinforced Concrete Slabs with Steps)

  • 김상희;홍건호;박홍근;한규범;강현구
    • 콘크리트학회논문집
    • /
    • 제25권4호
    • /
    • pp.447-455
    • /
    • 2013
  • 이 실험적 연구는 콘크리트 단차슬래브의 성능을 평가하고 단차가 없는 평슬래브와 동등한 휨강도를 발현할 수 있는 보강상세를 제안하는데 그 목적이 있다. 이 연구에서는 단순지간 4점 재하 실험을 통하여 다양한 보강상세를 가진 12개 실험체의 성능을 서로 비교하였다. 추가보강근이 없는 단차슬래브는 휨강도, 강성, 처짐, 균열 등에서 평슬래브와 비교하여 매우 낮은 성능을 가졌으며, 특히 단차 내에서 균열이 빠르게 진전되어 조기에 힌지현상이 발생하였다. 반면 역U형철근, U형철근, 역L형철근, L형철근 등의 추가 보강상세를 가지는 단차슬래브는 평슬래브와 동등한 휨강도를 발현하였다. 역U형철근과 U형철근은 단차의 사인장 균열을 제어하는데 효과적이었고, 역L형철근과 L형철근은 일관적으로 단차 밖 평슬래브로 슬래브 주근의 휨항복을 유도하는 것으로 나타났다.

고(高) Energy밀도용접(密度熔接)에 의(依)한 용접(熔接)이음에 있어서의 잔류응력(殘留應力)과 피로특성(疲勞特性)에 관(關)한 연구(硏究) -HT80강(鋼)의 전자(電子) Beam 용접(熔接)이음 피로강도(疲勞强度)- (Study on the Residual Stress and Fatigue Strength of Welded Joint by High Energy Density Welding -Fatigue Scrength of Welded Joint of HT80 Steel by Electron Beam Welding-)

  • 박종은
    • 대한조선학회지
    • /
    • 제20권2호
    • /
    • pp.51-59
    • /
    • 1983
  • The versatile practical use of electron beam welding which is very high energy density is still in early stage, but in the special welding field, the welding process is used in manufactured goods. The investigation for electron beam welding up to the present was almost achieved not for the mechanical properties of welded joint but for the process itself. On this investigation, the fatigue strength, crack propergation phenomena and hardness of weld metal and heat affected zone of partially penetrated welded joint of HT80 steel by electron beam welding was accomplished. The tensile fatigue strength in weld line direction of the joint was about $25kg/mm^2$. There still appeared spikes on the tips of penetration, and the crack initiated at the tips of spikes not from the roots. The hardness of the weld metal was higher than it of base metal because of production of martensite by rapid cooling.

  • PDF

FEA based optimization of semi-submersible floater considering buckling and yield strength

  • Jang, Beom-Seon;Kim, Jae Dong;Park, Tae-Yoon;Jeon, Sang Bae
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권1호
    • /
    • pp.82-96
    • /
    • 2019
  • A semi-submersible structure has been widely used for offshore drilling and production of oil and gas. The small water plane area makes the structure very sensitive to weight increase in terms of payload and stability. Therefore, it is necessary to lighten the substructure from the early design stage. This study aims at an optimization of hull structure based on a sophisticated yield and buckling strength in accordance with classification rules. An in-house strength assessment system is developed to automate the procedure such as a generation of buckling panels, a collection of required panel information, automatic buckling and yield check and so on. The developed system enables an automatic yield and buckling strength check of all panels composing the hull structure at each iteration of the optimization. Design variables are plate thickness and stiffener section profiles. In order to overcome the difficulty of large number of design variables and the computational burden of FE analysis, various methods are proposed. The steepest descent method is selected as the optimization algorithm for an efficient search. For a reduction of the number of design variables and a direct application to practical design, the stiffener section variable is determined by selecting one from a pre-defined standard library. Plate thickness is also discretized at 0.5t interval. The number of FE analysis is reduced by using equations to analytically estimating the stress changes in gradient calculation and line search steps. As an endeavor to robust optimization, the number of design variables to be simultaneously optimized is divided by grouping the scantling variables by the plane. A sequential optimization is performed group by group. As a verification example, a central column of a semi-submersible structure is optimized and compared with a conventional optimization of all design variables at once.