• Title/Summary/Keyword: vertical vent

Search Result 31, Processing Time 0.023 seconds

Examination on Effect of Horizontal Vent Position on Fire Phenomena in Enclosure (구획실 화재 현상에 대한 수평 개구부 위치의 영향 검토)

  • Park, Yu Mi;Lee, Chi Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.235-236
    • /
    • 2022
  • In the present study, the effect of horizontal vent position on fire phenomena in the enclosure with vertical and horizontal vents was examined using numerical simulation. Case 1 indicates the condition that the horizontal vent is in the center of the ceiling. Case 3 indicates the condition that the horizontal vent is far away from the vertical vent. Case 2 indicates the condition that the horizontal vent is installed between Case 1 and Case 3. The temperature distribution, smoke layer temperature, velocity distribution, and mass flow rate of horizontal vent flow were analyzed. In Case 2, the temperatures were lowest and the mass flow rate through the horizontal vent was largest. This is because the flame is inclined by the inflow through the vertical vent. Hence, to determine the proper horizontal vent location for the high smoke ventilation performance, the inflow through the vertical vent and its effect on flame behavior should be considered.

  • PDF

A Numerical Study for the Performance of Natural Smoke-venting of a Vertical Vent (수직 배연구의 자연배연 성능에 관한 수치해석연구)

  • Jeon, Heung-Kyun;Choi, Young-Sang;Choo, Hong-Lok
    • Fire Science and Engineering
    • /
    • v.22 no.4
    • /
    • pp.1-10
    • /
    • 2008
  • In this study, the effects of vent location, outside temperature, wind velocity and fire size on the performance of natural venting of the vertical vent designed according to NFPA 204 standard and fire characteristics were numerically investigated using CFAST. In cases of the Vent located on most upper wall, lower outside temperature and lower wind velocity, vents met the performance criteria of venting. The larger fire size becomes, the more mass flow rate through a vent becomes, but the lower interface height of smoke layer becomes, so that vent didn't meet the performance criteria of venting. It should be noted that a natural vertical vent be designed considering maximum outside temperature and maximum wind velocity and developing a design fire accurately in order to meet the performance criteria of venting.

An Experimental Study of Smoke Movement in Tunnel Fires with a Vertical Shaft (수직갱이 설치된 터널내 화재시 연기거동에 관한 실험적 연구)

  • 이성룡;유홍선;김충익
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.2
    • /
    • pp.135-141
    • /
    • 2004
  • The present paper concerns a smoke movement in a tunnel fire with a vertical shaft. The model tunnel measured 13.4m long, 0.4m wide and 0.4m high. The cross section is 1: 20 of a full scale tunnel. Ethanol was used as a fuel. The fire size in model tests varied from 1.35 kW to 13.37 kW, which corresponds to full scale fires of 2.41 to 23.91 MW. Smoke front velocity and temperatrue were decreased due to the vertical shaft install. Temperature was reduced maximum about 2$0^{\circ}C$ at ceiling and about 23$^{\circ}C$ at vertical position. CO concentration was reduced as the vent width widened. When vent width was more than 15 cm, CO concentration was not reached 100 ppm. Descent degree of the smoke layer was confirmed through the visualization.

Comparison of Indoor Thermal Environments in Winter depending on Supply Vent Configurations (급기구 형상에 따른 겨울철 실내 온열환경의 비교)

  • Han, Hwa-Taik;Jeong, Young-Kyun
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.970-975
    • /
    • 2008
  • This study considers indoor thermal comfort in an ondol space by supply vent configurations to prevent cold draft in winter. A specially-designed vent cap has been investigated in comparison with a round pan-type vent and a simple opening without a cap. Numerical simulations have been conducted using CFD to analyze thermal comfort indices such as Predicted Mean Vote (PMV) and Effective Draft Temperature (EDT) as well as air distribution index i.e. Air Diffusion Performance Index (ADPI). Results show the new vent cap provides improved thermal comfort conditions especially near ondol heated floor, as the cold outdoor air spreads upwards along the vertical wall before reaching occupant region near floor. This paper includes discussions on the flow and comfort distributions created by the thermal jets from the vents.

  • PDF

An Experimental Study of Smoke Movement in Tunnel Fires According to Ventilation Method (터널화재시 환기방식에 따른 연기거동에 관한 실험적 연구)

  • 이성룡;정진용;김충익;유홍선
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.9
    • /
    • pp.691-698
    • /
    • 2002
  • In this study, reduced-scale experiments were conducted to analyze smoke movement in tunnel fires according to vepntilation method. The 1/20 scale experiments were carried out under the Froude scaling using gasoline pool fires ranging from 6.6 to 10 cm in diameter corresponding to total heat release rate from 0.714 to 2.5 kW. Temperatures near the ceiling were lowered by installing the vent, and much lowered by operating fan compared wiht tile case without vent. In case of forced ventilation, the exhaust fan was more effective than the intake fan. Vertical temperatures at the upper part of the tunnel were also lowered by installing the vent. But, when suction fan was operated, temperatures at the lower part of the tunnel were higher than that without vent.

Sanitary Plumbing System Design of High-rise Building (초고층 건축물의 위생설비 시스템 설계)

  • Ju, Duck-Hoon;Byun, Woon-Seob;Yun, Hae-Dong
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.491-496
    • /
    • 2009
  • Recently, the high-rise building has been constructed competitively because it is symbol of the national competitive power including the technical power. The higher buildings are getting, the more important building mechanical systems are. So, the building mechanical systems are getting developed. Among the building mechanical systems, the sanitary system is basically necessary in order to maintain the building hygienically along with convenience and safety. This study has been investigated for various cases of high-rise building plumbing system. As a result, a variety of zoning method has been applied to most skyscrapers depending on the building height in the building mechanical system. And a variety of joint have been applied to minimize the Shortening and Sway. Also, the drainage in same uses has been discharged outside of a build through the one vertical pipe line. And airing system has been used like Individual Vent Pipe Yoke Vent Pipe Stack Vent Pipe Loop Vent Pipe Relief Vent Pipe method. It is sure that this study could be used as the high-rise building design.

  • PDF

A Study on the Shock Wave Caused by VCE in Enclosure (밀폐공간에서의 VCE에 의한 충격파 고찰)

  • Leem, Sa-Hwan;Lee, Jong-Rark;Huh, Yong-Jeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • In order to establish detailed plans for fire protection and reduce the possible fire accidents in the future, a study on the shock wave caused by VCE(Vapor Cloud Explosion) is very important. Destruction phenomena of structure by gas explosion is due to the explosion pressure and heat. Explosion pressure is a kind of energy converted from the gas mixture explosion. Therefore, the propagation progress of shock wave and flame is very important. This study investigated the shock wave caused by VCE in enclosure with opened vent port. From a result, the vent port of top at the straight line of ignition and leak location was opened most rapidly, and the vertical vent port not opened.

A Study on the Shock Wave caused by VCE in Enclosure (밀폐공간에서의 VCE에 의한 충격파 고찰)

  • Leem, Sa-Hwan;Huh, Yong-Jeong;Lee, Jong-Rark
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.54-59
    • /
    • 2007
  • In order to establish detailed plans for fire protection and reduce the possible fire accidents in the future, a study on the shock wave caused by VCE(Vapor Cloud Explosion) is very important. Destruction phenomena of structure by gas explosion is due to the explosion pressure and heat. Explosion pressure is a kind of energy converted from the gas mixture explosion. Therefore, the propagation progress of shock wave and flame is very important. This study investigated the shock wave caused by VCE in enclosure with opened vent port. From a result, the vent port of top at the straight line of ignition and leak location was opened most rapidly, and the vertical vent port not opened.

  • PDF

3D GEOMETRY EFFECTS ANALYSIS ON PROPAGATION OF PRESSURE WAVE GENERATED BY HIGH-SPEED TRAIN TRAVELING IN A TUNNEL USING CFD (3차원 형상을 고려한 고속철도에 의한 터널내 압력파 전파의 CFD 해석)

  • Shin, D.Y.;Lee, S.G.;Oh, H.J.;Kim, H.G.;Yoon, S.H.;Kim, C.J.
    • Journal of computational fluids engineering
    • /
    • v.17 no.4
    • /
    • pp.49-55
    • /
    • 2012
  • Research has importance in proposing the design of a tunnel with a vertical vent to secure passengers in a comfortable environment and safe against pressure. Using several analysis methods, the magnitude of the pressure induced by the vertical vent in the tunnel can be analyzed. In addition to the 3-dimensional method, the 2-dimensional method and the 2-dimensional axis-symmetric method are also used to analyze the strong and weak points of each so that the optimum analysis method can be obtained. As a result, it appears that the 2-dimensional axis-symmetric method is the most suitable in analyzing tunnel pressure consider to accuracy and time effective aspect. Also, the 3-dimensional method is disadvantageous in that it takes longer in calculating results, but is more effective in predicting phenomena around the vertical vent in the tunnel.

Experimental Study on the Effect of the Area Ratio between Shaft and Tunnel and Heat Release Rate on the Plug-holing Phenomena in Shallow Underground Tunnels (저심도 도로터널에서 터널과 수직환기구의 단면적 비와 열방출률이 Plug-holing 현상에 미치는 영향에 관한 실험연구)

  • Hong, Kibea;Na, Junyoung;Ryou, Hong Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.619-625
    • /
    • 2019
  • It is difficult to design because of the plug-holing phenomenon in which the amount of smoke discharged from the vertical vent is smaller than the designed amount of smoke. In this study, the effect of cross-sectional area ratio of tunnel and natural ventilation and heat release rate of fire source on plug-holing phenomenon occurring in natural ventilation system was experimentally analyzed. In the experiment model reduced to 1/20 size, the aspect ratio of the tunnel and the vertical vent was fixed, and the influence on the plug-holing phenomenon was confirmed by varying the sectional area ratio of the tunnel and the vertical vent. Experimental results show that the plug-holing phenomenon is caused by the comparison of the smoke boundary layer temperature with the temperature in the vertical vents, and the flow and temperature distribution characteristics under the vertical vents are changed as the cross-sectional area ratio of the tunnel and vertical vents increases. The plug-holing phenomenon is affected by the cross-sectional area ratio between the tunnel and the vertical ventilation. The greater the cross-sectional area ratio, the greater the probability of plug-holing.