• Title/Summary/Keyword: vertical velocity

검색결과 1,228건 처리시간 0.029초

초소형 하드디스크에서 램프 형상 분석 및 설계 프로세스 연구 (Design Procedure and Analysis of Ramp Profile in SFF HDD)

  • 이용현;박경수;박노철;양현석;박영필
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.384-387
    • /
    • 2006
  • Vertical L/UL (Load/Unload) velocity is very important parameter to determine the L/UL performance, and the vertical velocity is determined by the actuator velocity and the ramp profile. However, it is not easy to precisely control the actuator rotating velocity during the L/UL process. Especially in emergency parking, servo system doesn't operate, it is impossible to control an actuator velocity. Then, the vertical unloading velocity depends on only ramp profile. The ramp height and the sliding length for L/UL process in SFF (Small Form Factor) HDD are restricted due to slimness and small media. For these reasons, it is very difficult to design the ramp profile in SFF HDD. Therefore, this study analyzes the unloading dynamic characteristics for various ramp profiles and makes the thesis for ramp profile design.

  • PDF

초소형 하드디스크에서 램프 형상 분석 및 설계 프로세스 연구 (Design Procedure and Analysis of Ramp Profile in SFF HDD)

  • 이용현;박경수;박노철;양현석;박영필
    • 정보저장시스템학회논문집
    • /
    • 제2권2호
    • /
    • pp.150-155
    • /
    • 2006
  • Vertical L/UL (Load/Unload) velocity is very important parameter to determine the L/UL performance, and the vertical velocity is determined by the actuator velocity and the ramp profile. However, it is not easy to precisely control the actuator rotating velocity during the L/UL process. Especially in emergency parking, servo system doesn't operate, it is impossible to control an actuator velocity. Then, the vertical unloading velocity depends on only ramp profile. The ramp height and the sliding length for L/UL process in SFF (Small Form Factor) HDD are restricted due to slimness and small media. For these reasons, it is very difficult to design the ramp profile in SFF HDD. Therefore, this study analyzes the unloading dynamic characteristics for various ramp profiles and makes the thesis for ramp profile design.

  • PDF

鉛直 過粘性係數가 流速의 鉛直構造에 미치는 影響 - 鉛直 過粘性係數가 주어진 境遇 - (Effects of Vertical Eddy Viscosity on the Velocity Profile - Cases of Given Vertical Eddy viscosity -)

  • 이종찬;최병호
    • 한국해양학회지
    • /
    • 제29권2호
    • /
    • pp.119-131
    • /
    • 1994
  • 모드분리기법의 gird-box형 3차원 수치모형을 이용하여 등밀도 등수심 유한영역에 서의 연직과점성 개수에 따른 취송유와 조류의 수평 유속 연직구조를 분석하였다. 연) 직과점성 계수가 수심에 일정할 경우 선영적으로 감소또는 증가하는 경우 이차함수 및 지수함수적으로 변하는 경우에 대한 해석해와의 비교를 통하여 모형 검증 및 연직유속 구조 분석이 실시되었다. 아울러 취송유에 경우 유속의 연직구조에 대한 해수표면 근 처에 "wall layer" 영향을 수치적으로 검토하였다. 모든 수직계산에서 연직층수는 열 세개로 가변 객자가 사용되었다. 수치모형은 유속의 연직구조를 만족스럽게 재연하게 으나 연직과점성 개수가 수심에 대하여 2차함수 및 지수적으로 감소하는 경우 해저면 부근에서 유속의 연직변화가 크게 나타나면서 해석해와 수치모형 결과간에 약간에 차 이가 나타났다. 수평 유속의 연직구조는 연직과점성 계수의 절대값 및 함수형태에 따 라 달라지며 해저면과 해수표면 부근의 유속은 wall layer 내의 연직과점성 계수에 민 감하게 반응하였다. 취송유에 경우에 해수표면에서의 연직 과점성 계수가 작을수록 강 한 shear가 표층에 형성되었으며 조류에 경우 연직 과점성 계수의 분포와 상관없이 해 저 한계층 상부의 유속은 거의 일정하게 나타나고 해조표내의 유속은 연직과점성 계수 가 줄어들수록 강한 shear 보였다.shear 보였다.

  • PDF

스탠스 유형에 따른 테니스 포핸드 스트로크의 라켓헤드 속도분석 (Analysis of Racket Head Velocity of Tennis Forehand Stroke by Stance Patterns)

  • 서국웅;강영택;이경순;서국은;김정태
    • 한국운동역학회지
    • /
    • 제17권1호
    • /
    • pp.53-60
    • /
    • 2007
  • Recently tennis techniques has been changed in stance patterns. Stance is consist of square stance, open stance and semi-open stance. The purpose of this study was to analyze the kinematics variables of racket head velocity during forehand stroke by stance patterns. Eight high school tennis players were chosen for the study who use semi western grip right-handed person more than career 7 years. They performed horizontal swing and vertical swing that it was done each five consecutive trial in the condition of square, open and semi-open stance. The results showed that racket head velocity significant difference was not observed in stance types between swings at impact. Y and Z components of racket head velocity for horizontal and vertical swing at second prior to impact and at impact were that y components velocity was faster horizontal swing than vertical swing and z components velocity was later horizontal swing than vertical swing. Statistically significant variable to racket head velocity and Pearson's correlation were drawn as follows. 1. Z components of racket head velocity in square stance was significant correlation by right knee joint. 2. Y components of racket head velocity in semiopen stance was significant correlation by left hip joint. 3. Y components of racket head velocity in open stance was significant correlation by left ankle joint.

자연하천에서 무차원 유속분포-지표유속법을 이용한 유량산정 (Discharge Estimation Using Non-dimensional Velocity Distribution and Index-Velocity Method in Natural Rivers)

  • 김창완;이민호;정성원;유동훈
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2007년도 학술발표회 논문집
    • /
    • pp.855-859
    • /
    • 2007
  • It is essential to obtain accurate and highly reliable streamflow data for water resources planning, evaluation and management as well as design of hydraulic structures. A new discharge estimation method, which is named 'non-dimensional velocity distribution and index-velocity method,' was proposed in this research. This method showed very close channel discharges which were calculated with the exiting velocity-area method. When velocity-area method is used to estimate channel discharge, it is required to observe point velocities at every desired point and vertical using a current meter like Price-AA. However 'non-dimensional velocity distribution and index-velocity method' is used, it become optional to observe point velocities at every desired point and vertical. But this method can not be applied for the cases of very complex and strongly asymmetric channel cross-sections because non-dimensional velocity distribution by entropy concept may be quite biased from that of natural rivers.

  • PDF

암반 경계표면의 진동속도 (Vibration Velocity of Rock Mass Boundary Surface)

  • 김일중;김영석
    • 화약ㆍ발파
    • /
    • 제15권4호
    • /
    • pp.11-17
    • /
    • 1997
  • Impulsive vibration velocity is monitored at the surface and the boundary surface of rocks as various impulsive forces of horizontal and vertical directions were given to rocks which had difference in uniaxial compressive strength for investigate to the vibration velocity of rocks according to the impulsive direction and the monitoring site. The vibration velocity of the boundary surface of rocks was about 2.9 times or much larger than that of the surface at the same scaled distance in the case of horizontal impulsive forces, and was above 4.2 times in the case of vertical impulsive forces. The attenuation exponents of the vibration velocity equations in the surface and the boundary surface of rocks make a vast difference with the impulsive directions, but is makes little difference in the case of the same impulsive direction. The ratio of vibration constants of the surface to the boundary surface of rocks is that square and cube root scaled equation is a range of 2.7∼3.0 and 4.9∼5.0 respectively in the case of horizontal impulsive forces, and is a range of 4.2∼5.7 and 7.7∼11.5 respectively in the case of vertical impulsive forces.

  • PDF

세단뛰기 지지국면 시 사지의 운동학적 변인과 전신 무게중심의 속도 변화와의 관계 (The Relationship between Kinematics of the Limb motions and Changes in the Velocity of the Center of Gravity of the Whole Body during Support Phase in the Triple Jump)

  • 류재균;정철정;박진
    • 한국운동역학회지
    • /
    • 제13권3호
    • /
    • pp.27-46
    • /
    • 2003
  • The purposes of this study were to determine the functions of actions of the limbs during each of the three support phases of the triple jump and their relationships with the performance of the triple jump. Four elite male triple jumpers were participated as subjects. The statistical analyses used were the Pearson product moment correlation coefficient for establishing relationships and simple regression analyses to determine and compare the relationships between the change of the horizontal velocity and the change of the vertical velocity during different support phases. A level of significance at p<.05 was set. The actions of the arms were responsible for about 25%, 25%, and 30% of the decrease in the horizontal velocity of the whole body center of gravity during the support phases of the hop, step, and jump, respectively. The change in the velocities of the whole body center of gravity due to the actions of the free limbs were significantly related with the whole body center of gravity during each support phase. The action of the support leg was associated with the decrease in the horizontal velocity and the increase in the vertical velocity of the whole body center of gravity during each support phase.

도심지 발파공사장의 발파진동 특성 (The Characteristics of Blasting Vibration in the Construction of Apartment and Buildings in Urban Area)

  • 장서일;이연수
    • 한국소음진동공학회논문집
    • /
    • 제14권7호
    • /
    • pp.632-638
    • /
    • 2004
  • In order to evaluate the effect of blasting vibration in buildings and it's resident located around blasting construction field in urban area, blasting vibration characteristics were measured by the vibration level, vibration velocity. The 250g and 750g of charged powder were used at the apartment and at the ground, respectively. In the measurement of the ground, 2 (perpendicularity) axis was the highest value in vibration level, but vertical direction was the highest value at 25 m point and longitudinal direction was the highest value at 50 m point in vibration velocity. The amount of measurement was high value when measuring point is higher than blasting source, while that of measurement was low value when measuring point is lower than blasting source. In the measurement of the apartment, Z axis was the highest value in vibration level, but in vibration velocity transverse direction was the highest value at ground, was vertical direction at 1st floor, was longitudinal direction at 3rd floor and was vertical and longitudinal direction at 5th floor. The vibration level and the vibration velocity of 50 m point showed higher correlation value than 25 m point at the ground, but those of 25 m point showed higher correlation value than 50 m point at the apartment.

상대수직속도를 고려한 파랑중 선박의 슬래밍 충격하중 및 응답 계산 (Numerical Prediction of Slamming Impact Loads and Response on a Ship in Waves Considering Relative Vertical Velocity)

  • 최문관;박인규;구원철
    • 대한조선학회논문집
    • /
    • 제51권6호
    • /
    • pp.503-509
    • /
    • 2014
  • This paper describes the time-domain numerical method for prediction of slamming loads on a ship in waves using the strip theory. The slamming loads was calculated considering the relative vertical velocity between the instantaneous ship motion and wave elevation. For applying the slamming force on a ship section, the momentum slamming theory and the empirical formula-based bottom slamming force were used corresponding to the vertical location of wetted body surface. Using the developed method, the vertical bending moments, relative vertical velocities, and impact forces of S175 containership were compared in the time series for various section locations and wave conditions.

수직 Rayleigh 유동내의 입자 거동 해석 (Analysis for Particle Motion of Vertical Rayleigh flow)

  • 고석보;전용두;이금배
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.755-760
    • /
    • 2006
  • The exhaust gas with solid particle goes through the riser in both particle circulating type and circulating fluidized bed type heat exchanger to recover the heat. During heat transfer, gas velocity in vertical riser decreases as viscosity of exhaust gas decreases. In this case, when the particle size is fixed, sometimes the exhaust gas happens to have lower velocity which prohibit them to go out of the riser. In this paper the particle motion in vertical Rayleigh flow was studied. The behavior of heat transfer was investigated by means of velocity and temperature distribution. The result from numerical analysis was validated by the experimental results. Fortran code was used to analyze the particle motion in vertical Rayleigh flow.

  • PDF