• Title/Summary/Keyword: vertical type blade

Search Result 54, Processing Time 0.026 seconds

Aerodynamic characteristics of a small vertical axis wind turbine with dual blade type (이중 날개 형태의 소형 수직축 풍력터빈의 공기 역학적 특성)

  • Park, Byungho;Kim, Jongsik;Lim, Jongho;Ehim, Jongbin;Lee, Seungho;Lee, Jinhyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.63.2-63.2
    • /
    • 2011
  • The objective of this study is to investigate the aerodynamic characteristics of a small vertical axis wind turbine with dual blade type. The Wind turbine with dual blade has various angle of attack. so this turbine improve starting characteristics. The various arrangement of the vertical axis wind turbine with dual blade is designed. Among them, it shows superior quality that is arranged in three rows. Among arrangement in three rows, we use general computational fluid dynamics program CFX to find out the optimal arrangement. By comparing the predicted results of the aerodynamic characteristics of the different arrangement of the blades, an appropriate arrangement of the blade is suggested to design the small wind turbine blade.

  • PDF

Development of Flapping Type Wind Turbine System for 5 kW Class Hybrid Power Generation System

  • Lee, Haseung;Kong, Changduk;Park, Hyunbum
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.167-174
    • /
    • 2016
  • Even though the differential drag type machines of the vertical wind turbines are a bit less efficient than the lift type machines such as Darrieus type machines, they have an advantage of low starting torque. The flapping blade type wind turbine is a specific type of the differential drag machines, and it has no need for orientation as well as quite low starting torque. This work is to develop an innovative 5kW class flapping type vertical wind turbine system which will be applicable to a hybrid power generation system driven by the diesel engine and the wind turbine. The parametric study was carried out to decide an optimum aerodynamic configuration of the wind turbine blade. In order to evaluate the designed blade, the subscale wind tunnel test and the performance test were carried out, and their test results were compared with the analysis results.

A Study on Development of Wind Power 400W Generation System with Vertical axis Type (400W 수직형 풍력발전시스템의 개발에 관한 연구)

  • Yoon, Jeong-Phil;Choi, Jang-Kyun;Cha, In-Su
    • New & Renewable Energy
    • /
    • v.2 no.3
    • /
    • pp.23-30
    • /
    • 2006
  • Need developments of substitute energy to solve problem of global warming by excess use of fossil energy, excess discharge of carbon dioxide. wind power generation system is all-important energy in next generation as clean energy. Environmental pollution of wind power generation system is not exhausted entirely. And, electric-power generation system cost is cheap than other energy. Wind Generation system that is supplied much present is most horizontality style blade structure. But, Horizontal style structure is serious noise and there is problem in stability of blade. We designed special blade solve to this problem. And, manufactured vertical axis wind power generation system because using blade. Also, developed assistance power generator to increase driving efficiency ago wind power generation. We expect this devices that is such cover shortcoming of wind power generation system.

  • PDF

Structural Design and Analysis of Connecting Part for Vertical Wind Turbine System Blade

  • Park, Hyunbum
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.2
    • /
    • pp.44-49
    • /
    • 2020
  • This work is intended to develop a flapping-type vertical wind turbine system that will be applicable to diesel generators and wind turbine generator hybrid systems. In the aerodynamic design of the wind turbine blade, parametric studies were performed to determine an optimum aerodynamic configuration. After the aerodynamic design, the structural design of the blade was performed. The major structural components of the flapping-type wind turbine are the flapping blade, the connecting part, and the stopper. The primary focus of this work is the design and analysis of the connecting part. Structural tests were performed to evaluate the blade design, and the test results were compared with the results of the analysis.

Experimental study on the performance of urban small vertical wind turbine with different types (도시형 소형 수직축 풍력 발전기의 형태별 성능에 대한 실험적 고찰)

  • Kang, Deok-Hun;Shin, Won-Sik;Lee, Jang-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.6
    • /
    • pp.64-68
    • /
    • 2014
  • This paper is intended to provide experimental data for the design of the small VAWT(vertical axis wind turbine). Three types(lift, drag, and hybrid) of the blade of VAWT are tested with digital wind tunnel in this study. From the test, the relation of power coefficient and tip speed ratio for the blades are evaluated and compared each other depending on the blade type. Especially, the characteristics of hybrid blade which is shown to be expanded in the market without any logical data is proposed in the relation of power coefficient and tip speed ratio. It is shown that the hybrid blade can be used to make higher starting torque with trade off of degradation of power coefficient.

Shape design and flow analysis on a 200W-class gyromill type vertical axis wind turbine rotor blade (200 W급 자이로밀형 수직축 풍력터빈 로터 블레이드 형상설계 및 유동해석)

  • Cho, Woo-Seok;Kim, Hyun-Su;Choi, Young-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.2
    • /
    • pp.170-177
    • /
    • 2013
  • This study is focused on the shape design and flow analysis on a 200 W-class Gyromill type vertical axis wind turbine rotor blade. Single tube theory is adopted for the shape design of the turbine blade. 2-dimensional CFD analysis is conducted to examine the turbine performance with basic shape, and then 3-dimensional shape is determined from the examination of the performance. By the CFD analysis on the 3-dimensional shape of the wind turbine, performance of the turbine is examined and also, shape of the wind turbine rotor blade is determined accordingly. From the results of this study, a 200 W-class Gyromill type vertical axis wind turbine rotor blade is designed and the reliability of the design method is confirmed by CFD analysis.

Great capacity Generator of Wind Turbine (대용량 출력 풍력발전기 설계)

  • Hur, Man-Cheol
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.366-368
    • /
    • 2007
  • Mr. Hur has developed the 7500KW permanent magnet synchronous generator. The 7500KW generator has dual blade system with vertical axis type generation module. The 7500KW generator will generating that it is too expensive and construction payment. The advantages of dual blade system are cheap in generation with better efficiency, and safety compact structure. But also this system has the expensive slide ring for to distribute electrical power.

  • PDF

Aerodynamic Design and Performance Prediction of Wind Turbine Blade (풍력터빈 블레이드 공력설계 및 성능예측)

  • Kim, Cheol-Wan;Cho, Tae-Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.677-681
    • /
    • 2011
  • Characteristics of vertical and horizontal axis wind turbines are explained. The speed and direction of wind on the blade of the Darrieus type turbine changes very severely. Therefore dynamic stall happens periodically and the wake from the front blade deteriorates the performance of rear blades. Blade element momentum theory(BEMT) is widely utilized for aerodynamic design and performace prediction of horizontal axis wind turbine(HAWT). Computation analysis and wind tunnel test are also performed for the performance prediction.

  • PDF

Design Method for the Darrieus Type Wind Turbine (다리우스형 풍력블레이드의 설계 방법)

  • Lee, Jang-Ho;Du, Lian
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1465-1469
    • /
    • 2009
  • Darrieus wind turbine blade is one of the vertical wind power system in which the lift of blade is used. In the calculation of wind power for the type of that, the multiple streamtubes method is known as an effective method. But it has big difference in the region of higher tip speed ratio because the incoming air velocity is used in the calculation of lift. The incoming air velocity is reduced from inlet to outlet continually by transferring energy to the wind blade. In this study, the air velocity on the blade, which is called blade velocity, is obtained with newly developed algorithm and used to determine the lift. And it is verified that applying blade velocity on the lift calculation cause the power prediction to improve dramatically in the region of higher tip speed ratio.

  • PDF

Particle Motion of a Vertical Rotary Distributor for Granular Material (수직형(垂直形) 로터리 살포기(撒布機)에 의한 비료입자(肥料粒子)의 운동(運動))

  • Sung, M.K.;Park, J.G.;Choi, C.H.
    • Journal of Biosystems Engineering
    • /
    • v.14 no.4
    • /
    • pp.242-250
    • /
    • 1989
  • The performance of a vertical type centrifugal distributor of granular materials was studied by means of mathematical models and experimental investigations. To develop the mathematical description of particle motion, some assumptions were made. The distribution process consisted of three stages: the entrance of a particle to the blade, the motion of the particle on the blade, and the motion of the particle in the air. The physical properties of fertilizer, which affected the particle motion, were investigated: bluk density, coefficient of friction, coefficient of restitution, and particle size distribution. The particle motion were simulated by using a computer. A prototype distributor was designed and constructed for experimental tests. The following conclusions were drawn from the computer simulation and experiment results. 1. The fertilizer may slide or roll at the point of contact when they impact on the blade and move along the blade. 2. The interaction among fertilizers may prevent them from bouncing. 3. When fertilizers roll on the blade, rolling resistance is one of the factors affecting the particle's motion. 4. The trajectory angle and position of fertilizers from a disc depend on the blade position and particle shape, but the rotating speed of the disc affected them only slightly.

  • PDF