• Title/Summary/Keyword: vertical stiffness

Search Result 654, Processing Time 0.022 seconds

Analysis of Post-tensioned Slab Bridge by Means of Specially Orthotropic Laminates Theory (특별직교이방성 복합적층판 이론을 응용한 포스트텐션된 슬래브 교량의 해석)

  • Han, Bong Koo;Kim, Yun Pyo
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.1
    • /
    • pp.105-111
    • /
    • 2002
  • A post-tensioned slab bridge is analyzed by the specially orthotropic laminates theory. Both the geometry and the material of the cross section of the slab are considered symmetrical with respect to the mid-surface so that the bending extension coupling stiffness, $B_{ij}=0$, and $D_{16}=D_{26}=0$. Each longitudinal and transverse steel layer is regarded as a lamina, and material constants of each lamina is calculated by the use of rule of mixture. This bridge with simple support is under uniformly distributed vertical and axial loads. In this paper, the finite difference method and the beam theory are used for analysis. The result of beam analysis is modified to obtain the solution of the plate analysis. The result of this paper can be used for post-tensioned slab bridge analysis by the engineers with undergraduate study in near future.

Pushover Analysis of a 5-Story RC OMRF Considering Inelastic Shear Behavior of Beam-Column Joint (보-기둥 접합부 비탄성 전단거동을 고려한 5층 철근콘크리트 보통모멘트골조의 푸쉬오버해석)

  • Kang, Suk-Bong;Kim, Tae-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.5
    • /
    • pp.517-524
    • /
    • 2012
  • In this study, the effects of the inelastic shear behavior of beam-column joint and the vertical distribution of lateral load are evaluated considering higher modes on the response of RC OMRF using the pushover analysis. A structure used for the analysis was a 5-story structure located at site class SB and seismic design category C, which was designed in accordance with KBC2009. Bending moment-curvature relationship for beam and column was identified using fiber model. Also, bending moment-rotation relationship for beam-column joint was calculated using simple and unified joint shear behavior model and moment equilibrium relationship for the joint. The results of pushover analysis showed that, although the rigid beam-column joint overestimated the stiffness and strength of the structure, the inelastic shear behavior of beam-column joint could be neglected in the process of structural design since the average response modification factor satisfied the criteria of KBC2009 for RC OMRF independent to inelastic behavior of joint.

Evaluating Structural Performance of High-Strength Concrete Corbels Containing Steel and Polypropylene Fibers (강섬유 및 폴리프로필렌 섬유로 보강된 고강도콘크리트 내민받침의 구조 거동 평가)

  • Yang, Jun-Mo;Lee, Joo-Ha;Min, Kyung-Hwan;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.747-754
    • /
    • 2008
  • In this study, high strength concrete corbels reinforced with steel fibers and polypropylene fibers, and subjected to the vertical and horizontal loads were constructed and tested. The results showed that performance in terms of load carrying capacities, stiffness, ductility, crack width, and number of cracks was improved, as the steel fibers and polypropylene fibers were added. The polypropylene fiber reinforced concrete corbels resulted in higher ductility in presence of horizontal loads, but showed larger crack width than the steel fiber reinforced concrete corbels. And, the heads of the headed bars provided excellent end anchorage of the main tension tie reinforcement. Experimental results presented in this paper are also compared with various prediction models proposed by codes and researchers. The refined strut-and-tie model showed more accurate and conservative predictions in presence of horizontal loads, and the truss model proposed by Fattuhi provides fairly good predictions for fiber reinforced concrete corbels.

Performance comparison of shear walls with openings designed using elastic stress and genetic evolutionary structural optimization methods

  • Zhang, Hu Z.;Liu, Xia;Yi, Wei J.;Deng, Yao H.
    • Structural Engineering and Mechanics
    • /
    • v.65 no.3
    • /
    • pp.303-314
    • /
    • 2018
  • Shear walls are a typical member under a complex stress state and have complicated mechanical properties and failure modes. The separated-elements model Genetic Evolutionary Structural Optimization (GESO), which is a combination of an elastic-plastic stress method and an optimization method, has been introduced in the literature for designing such members. Although the separated-elements model GESO method is well recognized due to its stability, feasibility, and economy, its adequacy has not been experimentally verified. This paper seeks to validate the adequacy of the separated-elements model GESO method against experimental data and demonstrate its feasibility and advantages over the traditional elastic stress method. Two types of reinforced concrete shear wall specimens, which had the location of an opening in the middle bottom and the center region, respectively, were utilized for this study. For each type, two specimens were designed using the separated-elements model GESO method and elastic stress method, respectively. All specimens were subjected to a constant vertical load and an incremental lateral load until failure. Test results indicated that the ultimate bearing capacity, failure modes, and main crack types of the shear walls designed using the two methods were similar, but the ductility indexes including the stiffness degradation, deformability, reinforcement yielding, and crack development of the specimens designed using the separated-elements model GESO method were superior to those using the elastic stress method. Additionally, the shear walls designed using the separated-elements model GESO method, had a reinforcement layout which could closely resist the actual critical stress, and thus a reduced amount of steel bars were required for such shear walls.

A Study on the Bending and Torsional Behaviors of Cable-Stayed Bridges under a Concentrated Moving Load (집중 이동하중을 받는 사장교의 휨 및 비틈 거동에 관한 연구)

  • Chang, Sung Pil;Yhim, Sung Soon;Chu, Seok Beom
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.3
    • /
    • pp.1-12
    • /
    • 1989
  • The nonlinearity of a cable-stayed bridge results from the large displacement of main girder due to a long span, the catenary action of cables and the flexural stiffness reduced by large axial forces. The dynamic behaviour of a cable-stayed bridge plays an important role in determining its safety. Especially, when the eccentrically moving load is applied to a cable-stayed bridge, the torsional vibration and vertical vibration are coupled and moreover the variation of cable tensions shows important dynamic characteristics. This dissertation presents a theoretical study and a finite element procedure for analysis of a cable-stayed bridge under a eccentrically moving load. Attention is focused on the dynamic behaviours such as dynamic increments of cable tensions and nodal displacements, with the variety of velocities and eccentricities of moving load. It is found that a moving load with eccentricity can have significant effects upon the responses; the torsion of bridge deck and the increments of cable tensions, according to the present results in this study.

  • PDF

A four variable trigonometric integral plate theory for hygro-thermo-mechanical bending analysis of AFG ceramic-metal plates resting on a two-parameter elastic foundation

  • Tounsi, Abdelouahed;Al-Dulaijan, S.U.;Al-Osta, Mohammed A.;Chikh, Abdelbaki;Al-Zahrani, M.M.;Sharif, Alfarabi;Tounsi, Abdeldjebbar
    • Steel and Composite Structures
    • /
    • v.34 no.4
    • /
    • pp.511-524
    • /
    • 2020
  • In this research, a simple four-variable trigonometric integral shear deformation model is proposed for the static behavior of advanced functionally graded (AFG) ceramic-metal plates supported by a two-parameter elastic foundation and subjected to a nonlinear hygro-thermo-mechanical load. The elastic properties, including both the thermal expansion and moisture coefficients of the plate, are also supposed to be varied within thickness direction by following a power law distribution in terms of volume fractions of the components of the material. The interest of the current theory is seen in its kinematics that use only four independent unknowns, while first-order plate theory and other higher-order plate theories require at least five unknowns. The "in-plane displacement field" of the proposed theory utilizes cosine functions in terms of thickness coordinates to calculate out-of-plane shear deformations. The vertical displacement includes flexural and shear components. The elastic foundation is introduced in mathematical modeling as a two-parameter Winkler-Pasternak foundation. The virtual displacement principle is applied to obtain the basic equations and a Navier solution technique is used to determine an analytical solution. The numerical results predicted by the proposed formulation are compared with results already published in the literature to demonstrate the accuracy and efficiency of the proposed theory. The influences of "moisture concentration", temperature, stiffness of foundation, shear deformation, geometric ratios and volume fraction variation on the mechanical behavior of AFG plates are examined and discussed in detail.

Nonlinear Behavior Analysis of RC Shear Wall Using Truss Theory (트러스 이론을 이용한 철근 콘크리트 전단벽의 비선형 거동해석)

  • Seo, Soo-Yeon;Kim, Jeong-Sik;Choi, Yun-Chul;Lee, Li-Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.3
    • /
    • pp.213-220
    • /
    • 2005
  • Recently, a concern to verify the displacement capacity of shear wall has been arised to produce suitable data for the performance based design. In this paper, a process is presented to evaluate the displacement capacity of shear wall. The displacement of shear wall is expressed as the superposition of shear and flexural deformation. Variable crack angle truss model with a modification and sectional analysis method are used in calculating shear and flexural displacement, respectively. In addition, the effect of axial force and the contribution of vertical and horizontal reinforcements in wall are considered in the analysis. The accuracy of proposed method is evaluated by the comparison calculation results with previous test results. From the comparison, it was shown that the hysteretic behavior of shear wall could be well predicted by using the process. In the case with flange wall, however, the method overestimates the contribution of flange wall for strength and stiffness and underestimates for displacement capacity.

Lateral Pressure on ,anchored Excavation Retention walls (앵카지지 굴착흙막이벽에 작용하는 측방토압)

  • 홍원표;이기준
    • Geotechnical Engineering
    • /
    • v.8 no.4
    • /
    • pp.81-98
    • /
    • 1992
  • Deep excavation increases utility of underground spaces for high buildings. subways etc. To excavate vertically the underground, safe earth retaining walls and supporting systems should be prepared. Recently anchors have been used to support the excavation wall. The anchored excavation has some advantages toprovide working space for underground construction. In this paper the prestressed anchor loads were measured by load cells which attacted to the anchors to support the excavation walls at eight construction fields. where under-ground deep excavation was performed on cohesionless soils. The lateral pressures on the retaining walls, which are estimated from the measured anchor forces, shows a trapezoidal distribution that the pressure increases linearly with depth from the ground surface to 30% of the excavation depth and then keeps constant value regardless of the stiffness of the walls. The maximum lateral pressure was same to 63% of the Ranking active earth pressure or 17% of the vertical overburden pressure at the final depth The investigation of the measured lateral pressure on the anchored excavation walls shows that empirical earth pressure diagram presented by Terzaghi-Peck and Tschebotarioff could be applied with some modifications to determine anchor loads for the anchored excavation in cohesionless soils.

  • PDF

Seismic analysis of half-through steel truss arch bridge considering superstructure

  • Li, Ruiqi;Yuan, Xinzhe;Yuan, Wancheng;Dang, Xinzhi;Shen, Guoyu
    • Structural Engineering and Mechanics
    • /
    • v.59 no.3
    • /
    • pp.387-401
    • /
    • 2016
  • This paper takes a half-through steel truss arch bridge as an example. A seismic analysis is conducted with nonlinear finite element method. Contrast models are established to discuss the effect of simplified method for main girder on the accuracy of the result. The influence of seismic wave direction and wave-passage on seismic behaviors are analysed as well as the superstructure and arch ring interaction which is mostly related with the supported bearings and wind resistant springs. In the end, the application of cable-sliding aseismic devices is discussed to put forward a layout principle. The main conclusions include: (1) The seismic response isn't too distinctive with the simplified method of main girder. Generally speaking, the grillage method is recommended. (2) Under seismic input from different directions, arch foot is usually the mostly dangerous section. (3) Vertical wave input and horizontal wave-passage greatly influence the seismic responses of arch ring, significantly increasing that of midspan. (4) The superstructure interaction has an obvious impact on the seismic performance. Half-through arch bridges with long spandrel columns fixed has a less response than those with short ones fixed. And a large stiffness of wind resistant spring makes the the seismic responses of arch ring larger. (5) A good isolation effectiveness for half-through arch bridge can be achieved by a reasonable arrangement of CSFABs.

ANALYSIS OF THE OPTIMIZED H TYPE GRID SPRING BY A CHARACTERIZATION TEST AND THE FINITE ELEMENT METHOD UNDER THE IN-GRID BOUNDARY CONDITION

  • Yoon Kyung-Ho;Lee Kang-Hee;Kang Heung-Seok;Song Kee-Nam
    • Nuclear Engineering and Technology
    • /
    • v.38 no.4
    • /
    • pp.375-382
    • /
    • 2006
  • Characterization tests (load vs. displacement curve) are conducted for the springs of Zirconium alloy spacer grids for an advanced LWR fuel assembly. Twofold testing is employed: strap-based and assembly-based tests. The assembly-based test satisfies the in situ boundary conditions of the spring within the grid assembly. The aim of the characterization test via the aforementioned two methods is to establish an appropriate assembly-based test method that fulfills the actual boundary conditions. A characterization test under the spacer grid assembly boundary condition is also conducted to investigate the actual behavior of the spring in the core. The stiffness of the characteristic curve is smaller than that of the strap-wised boundary condition. This phenomenon may cause the strap slit condition. A spacer grid consists of horizontal and vertical straps. The strap slit positions are differentiated from each other. They affords examination of the variation of the external load distribution in the grid spring. Localized legions of high stress and their values are analyzed, as they may be affected by the spring shape. Through a comparison of the results of the test and FE analysis, it is concluded that the present assembly-based analysis model and procedure are reasonably well conducted and can be used for spring characterization in the core. Guidelines for improving the mechanical integrity of the spring are also discussed.