• Title/Summary/Keyword: vertical shear

Search Result 920, Processing Time 0.022 seconds

Influence of the stiffness of Vertical Joints on the Behaviour of Precast Shear Walls. Part1. Load Case 1 (연직접합(鉛直接合)의 강성(剛性)이 프리케스트 전단벽(剪斷壁)의 구조적거동(構造的擧動)에 미치는 영향(影響) I. 하중조합(荷重組合) 1에 대하여)

  • Park, Kyung-Ho
    • Journal of Industrial Technology
    • /
    • v.3
    • /
    • pp.103-116
    • /
    • 1983
  • Recent developments in multi-storey buildings for residential purpose have led to the extensive use of shear walls for the basic structural system. When the coupled shear wall system is used, joined together with cast-in-place concrete or mortar (or grout), the function of the continuous joints is a crucial factor in determining the safety of L.P. Precast concrete shear wall structures, because the function of the continuous joints(Vertical wall to wall joints) is to transfer froces from one element(shear wall panel) to another, and if sufficient strength and ductility is not developed in the continuous joints, the available strength in the adjoining elements may not be fully utilized. In this paper, the influence of the stiffness of vertical joints(wet vertical keyed shear joints) on the behaviour of precast shear walls is theoretically investigated. To define how the stiffness of the vertical joints affect the load carrying capacity of L.P.Precast concrete shear wall structure, the L.P.Precast concrete shear wall structure is analyzed, with the stiffness of the vertical joints varying from $K=0.07kg/mm^3$(50MN/m/m) to $K=1.43kg/mm^3$(1000MN/m/m), by using the continuous connection method. The results of the analysis shows that at the low values of the vertical stiffness, i.e. from $K=0.07kg/mm^3$(50MN/m/m) to $K=0.57kg/mm^3$(400MN/m/m), the resisting bending moment and shearing force of precast shear walls, the resisting shearing force of vertical joints and connecting beams are significantly affected. The detailed results of analysis are represented in the following figures and Tables.

  • PDF

Shear Strength of Vertical Joints in Precast Concrete Panel with Shear Key (전단키를 갖는 프리캐스트 콘크리트 패널 수직접합부의 전단강도)

  • Lee, Sang-Sup;Park, Keum-Sung;Bae, Kyu-Woong
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.9
    • /
    • pp.151-158
    • /
    • 2019
  • A concrete core is used widely as lateral stability systems in high-rise modular buildings. As an alternative to traditional cast in-situ core, the precast concrete(PC) method can accelerate the construction of reinforced concrete cores. A core composed of precast elements differs from a in-situ core in having connections between the precast elements. The typical vertical connection between PC panels is consisted of shear keys, loop bars, lacer bars and grout. In this study, the effect of vertical connection components on shear strength is investigated experimentally. The test results show that the contribution to the shear strength is greater in order of grout strength, shear keys, lacer bars and loop bars. In addition, the numerical models to estimate the shear strength according to two crack patterns in the vertical joint of the PC panels are derived. The feasibility of the numerical models is evaluated by comparing the estimated shear strength and the test results.

The Relationships Between Shear Reinforcement Ratios and Shear Strength in Reinforced Concrete Deep Beams (철근콘크리트 깊은 보에서 전단철근비와 전단내력의 관계)

  • Yang Keun-Hyeok;Park Jeong-Hwa;Chung Heon-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.256-259
    • /
    • 2004
  • The objective of this experimental study is to understand the effects of horizontal and vertical shear reinforcement on the shear strength of concrete deep beams. Main variables were the horizontal shear reinforcement ratio $(P_{sh})$, vertical shear reinforcement ratio$(P_{sv})$ and shear span-to-overall depth ratio(a/h). Test results revealed that the effectiveness of shear resistance of shear reinforcement was greatly related to the a/h. For the beams with $a/h\geq1.0$, the vertical shear reinforcement was more effective than horizontal shear reinforcement.

  • PDF

Shear Resistance Performance of Vertical Construction Joints in Slurry Walls Using Concrete Shear Keys (콘크리트 전단키에 의한 지하연속벽 수직시공이음부의 전단저항 성능)

  • Lee, Jeong-Young;Kim, Seung-Weon;Kim, Doo-Kie
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.399-400
    • /
    • 2023
  • Current building structural standards require the shear strength and rigidity in the design of vertical construction joints in a slurry wall. This paper proposes a shear key resistance method for shear connection of vertical construction joints, and compares its structural performance with the currently prevalent method of shear friction rebar. The study found the structural performance of the shear key resistance method was significantly better than that of the shear friction rebar method.

  • PDF

Shear Strength of the Vertical Joints in Precast Concrete Large Panel Structures (대형 콘크리트 판넬구조의 수직접합부 전단강도에 관한 연구)

  • 서수연;이원호;이리형
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.1
    • /
    • pp.111-119
    • /
    • 1994
  • The strength of vertical joints of precast concrete large panel structures depends on the many factors, such as the bond strength of grout concrete (or mortar), the interlocking of the shear keys, the dowel action of horizontal bars. Many experimental studies have been conducted to in vestigate the shear strength of the vertical joints. In domestic, a few design formulas to predict shear strength of the vertical joint were proposed by some investigators, but formulas were based on limited experimental results. The objective of this paper is to propose a suitable formula for the shear strength of vertical joints with 94 vertical joints experimental data using the modified Mohr-Coulomb's 4ield theory and regression analysis. From the comparison of the proposed formula with others, it is shown that the proposed formula can be used economically for the design of vertical joints.

Relationship between Impact and Shear Forces, and Shock during Running (달리기 시 충격력과 충격 쇼크 변인들과의 관계)

  • Park, Sang-Kyoon;Ryu, Ji-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.30 no.2
    • /
    • pp.145-154
    • /
    • 2020
  • Objective: The purpose of this study was to determine the relationship between impact and shear peak force, and tibia-accelerometer variables during running. Method: Twenty-five male heel strike runners (mean age: 23.5±3.6 yrs, mean height: 176.3±3.3 m/s, mean mass: 71.8±9.7 kg) were recruited in this study. The peak impact and anteroposterior shear forces during treadmill running (Bertec, USA) were collected, and impact shock variables were computed by using a triaxial accelerometer (Noraxon, USA). One-way ANOVA was used to test the influence of the running speed on the parameters. Pearson's partial correlation was used to investigate the relationship between the peak impact and shear force, and accelerometer variables. Results: The running speed affected the peak impact and posterior shear force, time, slope, and peak vertical and resultant tibial acceleration, slope at heel contact. Significant correlations were noticed between the peak impact force and peak vertical and resultant tibia acceleration, and between peak impact average slope and peak vertical and resultant tibia acceleration average slope, and between posterior peak (FyP) and peak vertical tibia acceleration, and between posterior peak instantaneous slop and peak vertical tibial acceleration during running at 3 m/s. However, it was observed that correlations between peak impact average slope and peak vertical tibia acceleration average slope, between posterior peak time and peak vertical and resultant tibia acceleration time, between posterior peak instantaneous slope and peak vertical tibial acceleration instantaneous slope during running at 4 m/s. Conclusion: Careful analysis is required when investigating the linear relationship between the impact and shear force, and tibia accelerometer components during relatively fast running speed.

Experimental study of vertical fence wake with flow separator (Flow separator가 부착된 수직벽 후류유동의 실험적 연구)

  • Choi, Young-Ho;Kim, Hyoung-Bum
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2006.12a
    • /
    • pp.68-72
    • /
    • 2006
  • Vertical fence has the coherent flow structure in front of the fence. In the present study, the wake change due to the flow separator in front of the vertical fence was experimentally investigated. Quantitative method was applied to study the separated shear flow field. The results show the flow separator changes the downstream shear flow and alters the curvature of separated shear layer As the freestream velocity increased, the reattachment length also increased.

  • PDF

Force-Displacement Relationship Diagram for Shear Connections in Vertical Construction Joints of Slurry Walls (지하연속벽 수직시공이음부의 전단접합부에 대한 힘-변위 상관도)

  • Lee, Jeong-Young;Kim, Seung-Weon;Kim, Doo-Kie
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.397-398
    • /
    • 2023
  • To design the shear connections for vertical construction joints of slurry walls, it is necessary to create a force-displacement curve that represents the structural performance of the shear connections. This paper proposes a method for preparing the force-displacement curve of the shear connections including major considerations.

  • PDF

Effect of vertical reinforcement connection level on seismic behavior of precast RC shear walls: Experimental study

  • Yun-Lin Liu;Sushil Kumar;Dong-Hua Wang;Dong Guo
    • Earthquakes and Structures
    • /
    • v.26 no.6
    • /
    • pp.449-461
    • /
    • 2024
  • The vertical reinforcement connection between the precast reinforced concrete shear wall and the cast-in-place reinforced concrete member is vital to the performance of shear walls under seismic loading. This paper investigated the structural behavior of three precast reinforced concrete shear walls, with different levels of connection (i.e., full connection, partial connection, and no connection), subjected to quasi-static lateral loading. The specimens were subjected to a constant vertical load, resulting in an axial load ratio of 0.4. The crack pattern, failure modes, load-displacement relationships, ductility, and energy dissipation characteristics are presented and discussed. The resultant seismic performances of the three tested specimens were compared in terms of skeleton curve, load-bearing capacity, stiffness, ductility, energy dissipation capacity, and viscous damping. The seismic performance of the partially connected shear wall was found to be comparable to that of the fully connected shear wall, exhibiting 1.7% and 3.5% higher yield and peak load capacities, 9.2% higher deformability, and similar variation in stiffness, energy dissipation capacity and viscous damping at increasing load levels. In comparison, the seismic performance of the non-connected shear wall was inferior, exhibiting 12.8% and 16.4% lower loads at the yield and peak load stages, 3.6% lower deformability, and significantly lower energy dissipation capacity at lower displacement and lower viscous damping.

Behavior of reinforced concrete corbels

  • Lu, Wen-Yao;Lin, Ing-Jaung
    • Structural Engineering and Mechanics
    • /
    • v.33 no.3
    • /
    • pp.357-371
    • /
    • 2009
  • Test results of thirteen reinforced concrete corbels with shear span-to-depth ratio greater than unity are reported. The main variables studied were compressive strength of concrete, shear span-to-depth ratio and parameter of vertical stirrups. The test results indicate that the shear strengths of corbels increase with an increase in compressive strength of concrete and parameter of vertical stirrups. The shear strengths of corbels also increase with a decrease in shear span-to-depth ratio. The smaller the shear span-to-depth ratio of corbel, the larger the stiffness and the shear strength of corbel are. The higher the concrete strength of corbel, the higher the stiffness and the shear strength of corbel are. The larger the parameter of vertical stirrups, the larger the stiffness and the shear strength of corbel are. The softened strut-and-tie model for determining the shear strengths of reinforced concrete corbels is modified appropriately in this paper. The shear strengths predicted by the proposed model and the approach of ACI Code are compared with available test results. The comparison shows that the proposed model can predict more accurately the shear strengths of reinforced concrete corbels than the approach of ACI Code.