• Title/Summary/Keyword: vertical loading

Search Result 788, Processing Time 0.025 seconds

Development and Seismic Performance of Vertical Joints in Precast Concrete Shear Walls under Cyclic Loads (반복하중을 받는 PC 전단벽체에서 수직접합부의 개발 및 내진성능평가)

  • Kim, Ook Jong;Oh, Jae Keun;Kang, Su Min
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.1
    • /
    • pp.140-148
    • /
    • 2012
  • Recently there are many attempts to introduce PC construction method in buildings. But the study on PC structural wall has been made progress so slowly because it is very difficult to develop new items. In this study, we have developed new vertical joint on PC wall in order to upgrade constructivity and structural performance of the existing connections, then we have evaluated the seismic resistance performance. As a result of the cyclic loading tests for two specimens, proposed vertical joint on PC wall has shown that it behave the excellent structural performance in comparison to PC wall having no joint. Therefore, we think that proposed vertical joint is the system to apply buliding structure.

Design Validation through Analysis of Concrete Modular Road Behavior under Static Axial Loads (콘크리트 모듈러 도로 축하중 거동 분석을 통한 설계 타당성 검증)

  • Nam, Jeong-Hee;Kim, Woo Seok;Kim, Ki Hyun;Kim, Yeon Bok
    • International Journal of Highway Engineering
    • /
    • v.17 no.6
    • /
    • pp.37-45
    • /
    • 2015
  • PURPOSES : The purpose of this study is to validate the design criteria of the concrete modular road system, which is a new semi-bridge-type concept road, through a comparison of numerical analysis results and actual loading test results under static axial loads. METHODS : To design the semi-bridge-type modular road, both the bridge design code and the concrete structural design code were adopted. The standard truck load (KL-510) was applied as the major traffic vehicle for the design loading condition. The dimension of the modular slab was designed in consideration of self-weight, axial load, environmental load, and combined loads, with ultimate limit state coefficients. The ANSYS APDL (2010) program was used for case studies of center and edge loading, and the analysis results were compared with the actual mock-up test results. RESULTS : A full-scale mock-up test was successfully conducted. The maximum longitudinal steel strains were measured as about 35 and 83.5 micro-strain (within elastic range) at center and edge loading locations, respectively, under a 100 kN dual-wheel loading condition by accelerating pavement tester. CONCLUSIONS : Based on the results of the comparison between the numerical analysis and the full-scale test, the maximum converted stress range at the edge location is 32~51% of the required standard flexural strength under the two times over-weight loading condition. In the case of edge loading, the maximum converted stresses from the Westergaard equation, the ANSYS APDL analysis, and the mock-up test are 1.95, 1.7, and 2.3 times of that of the center loading case, respectively. The primary reason for this difference is related to the assumption of the boundary conditions of the vertical connection between the slab module and the crossbeam module. Even though more research is required to fully define the boundary conditions, the proposed design criteria for the concrete modular road finally seems to be reasonable.

Effects of reinforcement on two-dimensional soil arching development under localized surface loading

  • Geye Li;Chao Xu;Panpan Shen;Jie Han;Xingya Zhang
    • Geomechanics and Engineering
    • /
    • v.37 no.4
    • /
    • pp.341-358
    • /
    • 2024
  • This paper reports several plane-strain trapdoor tests conducted to investigate the effects of reinforcement on soil arching development under localized surface loading with a loading plate width three times the trapdoor width. An analogical soil composed of aluminum rods with three different diameters was used as the backfill and Kraft paper with two different stiffness values was used as the reinforcement material. Four reinforcement arrangements were investigated: (1) no reinforcement, (2) one low stiffness reinforcement R1, (3) one high stiffness reinforcement R2, and (4) two low stiffness reinforcements R1 with a backfill layer in between. The stiffness of R2 was approximately twice that of R1; therefore, two R1 had approximately the same total stiffness as one R2. Test results indicate that the use of reinforcement minimized soil arching degradation under localized surface loading. Soil arching with reinforcement degraded more at unloading stages as compared to that at loading stages. The use of stiffer reinforcement had the advantages of more effectively minimizing soil arching degradation. As compared to one high stiffness reinforcement layer, two low stiffness reinforcement layers with a backfill layer of certain thickness in between promoted soil arching under localized surface loading. Due to different states of soil arching development with and without reinforcement, an analytical multi-stage soil arching model available in the literature was selected in this study to calculate the average vertical pressures acting on the trapdoor or on the deflected reinforcement section under both the backfill self-weight and localized surface loading.

Effect of loading direction on the low cycle fatigue behavior of rolled AZ31 Mg alloy (AZ31 Mg 합금 압연 판재에서 하중방향에 따른 저주기 피로특성)

  • Park, S.H.;Hong, S.G.;Lee, B.H.;Lee, C.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.77-80
    • /
    • 2008
  • Low-cycle fatigue (LCF) tests were carried out to investigate the effect of loading direction on the cyclic deformation behavior and fatigue resistance of rolled AZ31 magnesium alloy. The as-received alloy showed a strong basal texture indicating that the most of basal planes of hexagonal close-packed structure were located parallel to the rolling direction. Two types of specimens whose loading directions were oriented parallel (RD) and vertical (ND) to the rolling direction. respectively, were used for the comparison. It was found that RD specimens yielded at much lower stresses during compression, while vice versa for the ND specimens, which was mainly attributed to the formation of primary twins. This anisotropic deformation behavior resulted in the different mean stresses during the cycling of RD and ND specimens, affecting the fatigue resistance of two specimens. The ND specimen showed a superior fatigue resistance as compared to the RD specimen under strain-controlled condition.

  • PDF

Feasibility Study for Detecting Ocean Loading Displacements in the Western Costal Area of Korea Using GPS Measurements (GPS 관측을 통한 한반도 서해안 지역의 해수하중에 의한 지각변위 검출 가능성 조사)

  • 박관동;임형철
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.04a
    • /
    • pp.33-38
    • /
    • 2004
  • The ocean loading displacement of the crust is one of the major error sources in space geodesy techniques. In the western part of the Korean Peninsula, the vertical displacement due to ocean loading reaches up to 3cm. To check out the possibility of correcting the inaccurate ocean tide model in the Yellow Sea, we used four GPS sites to compute the height variations and compared them with the model-predicted ones. The comparison shows relatively good agreement except for small differences in the phase and amplitude.

  • PDF

An Experimental Study on the Safety of Temporary short pipe Scaffolding (가설 단관 비계의 안전성에 대한 실험적 연구)

  • 채원규
    • Journal of the Korean Society of Safety
    • /
    • v.9 no.4
    • /
    • pp.85-91
    • /
    • 1994
  • In this thesis, the fracture tests and structural analysis were performed on a series of temporary scaffolding to investigate the variation of strength and the safety of temporary scaffolding. The specimens were of height 270cm and width 50cm and their span was 120cm. The joint loading and member loading were used in the tests, respectively. In these tests, the fracture mode of temporary scaffolding, relationships between the loading and the flexural strain of the specimens were observed. According to the comparison between the test results and the structural analysis results, the effects of the vertical loads and horizontal loads on temporary scaffolding and the safety of temporary scaffolding were studied.

  • PDF

The research of application plan for the twist absorption structure type brake holder hanger (비틀림 흡수구조형 제륜자 홀더행거의 적용방안에 관한 연구)

  • Hong Jai-Sung;Ham Young-Sam;Paik Young-Nam
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.903-908
    • /
    • 2004
  • Among welded structure bogies in use for high speed freight car, a part of bogies manufactured in 1999 and 2000 have found problems that crack occurs in its end beam. In case of a freight car the difference of weight between empty and loading conditions are worse than in case of a passenger car. Moreover its brake system is tread brake without second suspension system. Cracks of end beam is supposed to be due to loading by brake system rather than vertical loading by freight. These cracks can make brake system useless and may be a cause of derailment in the worst case. In this study, we have proposed a simple torsion-free brake shoe holder hanger to remove torsion of hanger bracket which was supposed to be one of causes of cracks and performed finite element analyses. Also static load test was applied in torsion free brake shoe holder.

  • PDF

A study on evaluation of duplex loading pressure in Suction Drain Method (Suction Drain 공법에서 양방향 압력재하에 의한 효율 평가에 관한 연구)

  • Ahn, Dong-Wook;Chae, Kwang-Seok;Han, Sang-Jae;Yoon, Myung-Seok;Kim, Soo-Sam
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1256-1263
    • /
    • 2010
  • Suction Drain Method is soft ground improvement technique, in which a vacuum pressure can be directly applied to the Vertical Drain Board to promote consolidation and strengthening the soft ground. This method does not require a surcharge load, different to embankment or Preloading Method. In this study, ground improvement efficiency of suction drain method was estimated when duplex loading pressure with vacuum and pressure. During suction drain method process, surface settlement and pore pressure were monitored, and cone resistance test as well as water content were also measured after the completion of Suction Drain Method treatment.

  • PDF

Residual Stress of the Lower Control Arm Subjected to Cyclic Loading (변동하중을 받는 Lower Control Arm의 잔류응력 변화)

  • Kim Gi-Hoon;Kang Woo-Jong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.5 s.248
    • /
    • pp.602-608
    • /
    • 2006
  • Vehicle components such as lower control arm are usually affected by heat during the welding process. As a result, residual stress is generated, which has much effect on mechanical performances such as crashworthiness and durability. In this study, the residual stress in lower control arm has been measured by the x-ray diffraction method and been analyzed by finite element methods. Heat transfer during seam weld process has been calculated and used in calculating thermal deformation with temperature dependent material properties. High residual stress has been found at vertical wall both by measurement and simulation. The simulation also showed the residual stress re-distribution when the component is subjected to cyclic loading condition.

Bearing capacity of an eccentric tubular concrete-filled steel bridge pier

  • Sui, Weining;Cheng, Haobo;Wang, Zhanfei
    • Steel and Composite Structures
    • /
    • v.27 no.3
    • /
    • pp.285-295
    • /
    • 2018
  • In this paper, the bearing capacity of a non-eccentric and eccentric tubular, concrete-filled, steel bridge pier was studied through the finite element method. Firstly, to verify the validity of the numerical analysis, the finite element analysis of four steel tube columns with concrete in-fill was carried out under eccentric loading and horizontal cyclic loading. The analytical results were compared with experimental data. Secondly, the effects of the eccentricity of the vertical loading on the seismic performance of these eccentrically loaded steel tubular bridge piers were considered. According to the simulated results, with increasing eccentricity ratio, the bearing capacity on the eccentric side of a steel tubular bridge pier (with concrete in-fill) is greatly reduced, while the capacity on the opposite side is improved. Moreover, an empirical formula was proposed to describe the bearing capacity of such bridge piers under non-eccentric and eccentric load. This will provide theoretical evidence for the seismic design of the eccentrically loaded steel tubular bridge piers with concrete in-fill.