• Title/Summary/Keyword: vertical lift

Search Result 175, Processing Time 0.025 seconds

Characteristics on the chord length and cutting ratio of rear side blade for the offshore vertical axis wind turbine (날개 길이 및 후면부 절개 비율에 따른 해상용 수직축 풍력발전기 특성 평가)

  • Kim, Namhun;Kim, Kyenogsoo;Yoon, Yangil;Oh, Jinseok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.64.2-64.2
    • /
    • 2011
  • 해상용(offshore) 부이(bouy)는 선박의 항로를 지시하거나 암초, 침몰선 등 항해상의 위험물을 알리기 위해 사용 되며, 야간을 위해 등화장치를 설치한 것을 등부표라 한다. 등부표는 야간 점등을 위해 자체 전력 생산시스템을 갖추고 있으나, 기존의 태양광을 이용한 전력 시스템은 해상 환경에 따른 제약이 많아 안정적인 운영이 어려우므로 풍력 발전기(wind turbine)를 이용한 하이브리드 전력 생산시스템으로의 전환이 필요한 실정이다. 선행 연구는 수직축(vertical axis) 양력(lift) 및 항력(drag) 조합형 해상용 풍력발전기 개발에 대하여 수행하였으나, 본 논문에서는 풍력발전기의 효율 증대를 위해 날개 길이 및 후면부 절개 비율에 따른 수직축 풍력발전기 특성에 대하여 연구하였다. 풍력발전기의 설치조건은 선행연구와 동일하게 등명구 교체 작업을 원활하게 하기 위하여 설치 공간을 $1m{\times}1m$로 제한하였으며, 등부표의 구조를 고려하여 최상단에 지지 프레임을 별도로 구성 하였다. 풍력발전기의 블레이드는 0.6mm의 알루미늄 박판을 절곡하여 NACA 4418의 외형을 가지도록 제작하였고, 블레이드 설계 시 에어포일의 후면부를 절개하여 양력과 항력을 효과적으로 이용하며 저속과 고속에서 높은 효율을 가지도록 설계하였다. 또한 블레이드 날개 길이와 후면부 절개 비율에 따른 풍력발전기 특성을 실험을 통해 비교하여 기준 해상 풍속에서 블레이드 설계 최적화를 수행하였으며 비교 모델 대비 약32% 발전량이 증가한 설계변수 조합을 구하였다.

  • PDF

Behavior of Bridge Bearings for Railway Bridges under Running Vehicle

  • Choi, Eun-Soo;Yu, Wan-Dong;Kim, Jin-Ho;Park, Sun-Hee
    • International Journal of Railway
    • /
    • v.5 no.1
    • /
    • pp.10-21
    • /
    • 2012
  • Open steel plate girder (OPSG) bridges are the most prevalent railroad bridge type in Korea, constituting about 40% of all railroad bridges. Solid steel bearings, known as line type bearings, are placed in most OSPG railway bridges. However, the line type rigid bearings generate several problems with the bridge's dynamic behavior and maintenance in service. To compare and investigate the dynamic behaviors of line type, spherical and disk bearings, the vertical displacements of each bearing, including fixed and expansion type, under running vehicles are measured and analyzed. The displacements of disk and spherical bearings are measured after replacing the line type bearings with spherical and disk bearings. This study also analyzed dynamic behaviors of bridges. Furthermore, the deformation of the PTFE (Polytetrafluoroethylene) plate that is placed inside of expansion type spherical and disk bearings is measured and its effect on the dynamic behavior of the bridges is discussed. The up-lift phenomenon at the bearings installed for the steel bridges is estimated. The vertical displacements at mid-span of the bridges are compared according to the bearing types. Finally, the 1st mode natural frequencies are estimated, and the relationship to the vertical displacement is discussed.

Flow Analysis around Tilt-rotor Aircraft at Various Tilt Angles (틸트각 변화에 따른 틸트로터 항공기 주위의 유동해석)

  • Kim, Su-Yean;Choi, Jong-Wook
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.2
    • /
    • pp.40-47
    • /
    • 2011
  • Tilt-rotor aircraft can be used in various fields because they have the capabilities of the vertical take-off and landing and the high-speed cruise flight. In the present study, the flow analysis of a tilt-rotor aircraft is conducted at various tilt angles. The lift and drag forces of the tilt-rotor aircraft are obtained and the wakes by the rotor-blade are visualized. The result shows that the rotor-blade affects the lift force in a hovering mode and the main wing has an influence on the lift force in a cruise mode. Additional thrust is required at the tilt angle of around 40 degree due to the least lift force. The drag force is dependent on the rotor-blade at overall tilt angles. The minus drag force appears between the tilt angles of 90 degree and 55 degree. Also, the drag force is dramatically increased at the other tilt angles. The wake by rotor-blade affects the flow around the fuselage of the tilt-rotor aircraft at the tilt angles of 75 degree and 60 degree.

A System for the Selection of the Optimum Tower Cranes(Opt-TC) (건설현장의 조건을 고려한 최적 타워크레인 선정시스템)

  • Ho, Jonh-Kwan;Kim, Sun-Kuk;Kook, Dong-Hoon
    • Korean Journal of Construction Engineering and Management
    • /
    • v.8 no.6
    • /
    • pp.216-226
    • /
    • 2007
  • The efficient vertical lift planning has been brought into relief in high-rise building construction projects. Particularly, the selection and stability examination of the tower cranes is the most important elements in vertical lift planning. Therefore, professional knowledge is needed to full fill the site condition for the plan. However, there are short of the number of specialists and information about tower cranes. This study proposes a system for the selection of the optimum tower cranes (Opt-TC) in high-rise building construction projects. The Opt-TC can give the selection and stability examination of tower cranes at once in real-time.

An Experimental Study on the Sediment Transport Characteristics Through Vertical Lift Gate (연직수문의 퇴적토 배출특성에 관한 실험적 연구)

  • Lee, Ji Haeng;Choi, Heung Sik
    • Ecology and Resilient Infrastructure
    • /
    • v.5 no.4
    • /
    • pp.276-284
    • /
    • 2018
  • In order to analyze sediment transport characteristics of knickpoint migration, sediment transport length, and sediment transport weight through the under-flow type vertical lift gate, the hydraulic model experiment and dimensional analysis were performed. The correlations between Froude number and sediment transport characteristics were schematized. The multiple regression formulae for sediment transport characteristics with non-dimensional parameters were suggested. The determination coefficients of multiple regression equations appeared high as 0.618 for knickpoint migration, 0.632 for sediment transport length, and 0.866 for sediment transport weight. In order to evaluate the applicability of the developed hydraulic characteristic equations, 95% prediction interval analysis was conducted on the measured and the calculated by multiple regression equations, and it was determined that NSE (Nash-Sutcliffe Efficiency), RMSE (root mean square), and MAPE (mean absolute percentage error) are appropriate, for the accuracy analysis related to the prediction on sediment transport characteristics of kickpoint migration, sediment transport length and weight.

Dynamic Performance Analysis for Secondary Suspension of Maglev Control Systems with a Combined Lift and Guidance (편심배치방식 자기부상 제어시스템의 2차 현가에 대한 동특성 해석)

  • Kim, Jong-Shik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.1
    • /
    • pp.53-65
    • /
    • 1992
  • For improving the performance of maglev systems with a combined lift and guidance, it is suggested that the multivariable control systems and a secondary suspension should be added. The former is required to reject both track irregularities in vertical disturbances and wind gusts in lateral disturbances, and the latter to guarantee passengers against an unsatisfied criteria in ride quality. In this paper, bond graph model for the study of nonlinear dynamics of maglev systems with a combined lift and guidance is presented briefly. And, the secondary suspension is analyzed to understand the role of stiffness and damping factors in passive devices. Finally, LQG/LTR mulitivariable control systems are designed for the overall maglev systems with and without secondary suspension, and then the system performances in these two cases are evaluated.

  • PDF

Application of Immersed Boundary Method for Flow Over Stationary and Oscillating Cylinders

  • Lee Dae-Sung;Ha Man-Yeong;Kim Sung-Jin;Yoon Hyun-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.849-863
    • /
    • 2006
  • IBM (Immersed Boundary Method) with feedback momentum forcing was applied to stationary and moving bodies. The capability of IBM to treat the obstacle surfaces, especially with moving effect has been tested for two dimensional problems. Stationary and oscillating cylinders were simulated by using IBM based on finite volume method with Cartesian coordinates. For oscillating cylinder, lateral and vertical motions are considered, respectively. Present results such as time histories of drag and lift coefficients for both stationary and oscillating cases are in good agreement with previous numerical and experimental results. Also, the instantaneous wake patterns of oscillating cylinder with different oscillating frequency ratios well represented those of previous researches. More feasibility study for IBM has been carried out to two oscillating cylinders. Drag and lift coefficients are presented for two cylinders oscillating sinusoidally with phase difference of $180^{\circ}$.

Integrability of the Metallic Structures on the Frame Bundle

  • Islam Khan, Mohammad Nazrul
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.4
    • /
    • pp.791-803
    • /
    • 2021
  • Earlier investigators have made detailed studies of geometric properties such as integrability, partial integrability, and invariants, such as the fundamental 2-form, of some canonical f-structures, such as f3 ± f = 0, on the frame bundle FM. Our aim is to study metallic structures on the frame bundle: polynomial structures of degree 2 satisfying F2 = pF +qI where p, q are positive integers. We introduce a tensor field Fα, α = 1, 2…, n on FM show that it is a metallic structure. Theorems on Nijenhuis tensor and integrability of metallic structure Fα on FM are also proved. Furthermore, the diagonal lifts gD and the fundamental 2-form Ωα of a metallic structure Fα on FM are established. Moreover, the integrability condition for horizontal lift FαH of a metallic structure Fα on FM is determined as an application. Finally, the golden structure that is a particular case of a metallic structure on FM is discussed as an example.

Fatigue Life Prediction of Medical Lift Column utilizing Finite Element Analysis (유한요소해석을 통한 의료용 리프트 칼럼의 피로수명 예측)

  • Cheon, Hee-Jun;Cho, Jin-Rae;Yang, Hee-Jun;Lee, Shi-Bok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.3
    • /
    • pp.337-342
    • /
    • 2011
  • Medical lift column controlling the vertical position while supporting heavy eccentric load should have the high fatigue strength as well as the extremely low structural deflection and vibration in order to maintain the positioning accuracy. The lift column driven by a induction motor is generally in a three-step sliding boom structure and exhibits the time-varying stress distribution according to the up-and-down motion. This study is concerned with the numerical prediction of the fatigue strength of the lift column subject to the time-varying stress caused by the up-and-down motion. The stress variation during a motion cycle is obtained by finite element analysis and the fatigue life is predicted making use of Palmgren-miner's rule and S-N curves. In order to secure the numerical analysis reliability, a 3-D FEM, model in which the detailed lift column structure and the fitting parts are fully considered, is generated and the interfaces between lift column and pads are treated by the contact condition.

Lifting Load Recording and Management Method of the Lift for Construction Based Sensing Information

  • Taekyu Ko;Joonghwan Shin;Kyuhyup Lee;Soonwook Kwon;Chung-Suk Cho;Suwan Chung;Goeun ,Choi
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.2
    • /
    • pp.125-135
    • /
    • 2022
  • While buildings in recent days become taller and larger, many problems occur during the management of construction. Particularly, as the vertical movement of manpower and materials during construction has become longer while the lifting frequency and load increase, the need for a good lifting management practice is also increasing. Therefore, this study presents a real-time lifting performance monitoring system that can store and manage lifting records for construction management. Through review of literature and preceding studies related to construction lift, the concept of lift planning and operation management was understood, leading to the development of a system to monitor lifting operation and performance information. This system enabled quick measurement of the lifting performance during construction phase while responding to changes in the project schedule. To verify this system, a case study was conducted in which the current status and characteristics of the sensing-based lifting performance were derived.