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Abstract. Earlier investigators have made detailed studies of geometric properties such

as integrability, partial integrability, and invariants, such as the fundamental 2-form, of

some canonical f -structures, such as f3
± f = 0, on the frame bundle FM . Our aim is to

study metallic structures on the frame bundle: polynomial structures of degree 2 satisfying

F 2 = pF + qI where p, q are positive integers. We introduce a tensor field Fα, α = 1, 2..., n

on FM show that it is a metallic structure. Theorems on Nijenhuis tensor and integrability

of metallic structure Fα on FM are also proved. Furthermore, the diagonal lifts gD and

the fundamental 2-form Ωα of a metallic structure Fα on FM are established. Moreover,

the integrability condition for horizontal lift FH

α of a metallic structure Fα on FM is

determined as an application. Finally, the golden structure that is a particular case of a

metallic structure on FM is discussed as an example.

1. Introduction

The geometry of frame bundles is a powerful method in the geometry that
permits to get rich results while studying the various structures such as an almost
complex structure, f -structures, etc. on the base manifold admit lifts to the frame
bundle. Cordero at el [4, 5] studied horizontal and diagonal lifts of connections and
tensor fields of a different type; for example, tensor fields of type (1,1) and (0,2).
They studied the integrability and the partial integrability of an f -structure Fα on
the frame bundle. Kowalski and Sekizawa [17] investigated curvatures of diagonal
lift from an affine manifold to the linear frame bundle.

On the other hand, Goldenberg et al [7, 8] introduced the polynomial structure
Q(J) = Jn + anJn−1 + .....+ a2J + a1I where J is the tensor field of type (1,1) and
I is an identity operator on differentiable manifold M . The polynomial structure
of degree 2 satisfying J2 = pJ + qI is called a metallic structure on differentiable
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manifoldM . The notion of the metallic mean family introduced by Spinadel [24, 25].
The golden mean, Silver mean, Bronze mean, Subtal mean, etc. are the members of
the Metallic Mean Family [21, 22, 26]. The general quadratic equation x2−px−q =
0, p and q some positive integers, has the positive solution denoted by

θqp =
p+

√

p2 + 4q

2
,

is called Metallic Mean Family.
The differential geometry of the metallic structure on a Riemannian manifold

is an effective domain of differential geometry. Hretcamu and Crasmareanu [10]
studied and analyzed the geometric properties of the metallic structure on the Rie-
mannian manifold. The metallic structures on the tangent bundle of a Riemannian
manifold by using complete and horizontal lifts studied by Kazmi [1]. The author
[15] studied complete and horizontal lifts of the metallic structures and investigated
integrability conditions for these structures. Turanli et. al. [27] constructed metallic
Kähler and nearly metallic Kähler structures on Riemannian manifolds and studied
curvature properties of such structures on Riemannian manifold. The geometry of
metallic structure was studied in [9, 11, 12, 13, 16, 20].

The main contributions of the paper can be listed as follows:

• A tensor field Fα, α = 1, 2..., n of type (1,1) is introduced and shows that it
is a metallic structure on the frame bundle FM .

• Nijenhuis tensor NFα
of a tensor field Fα and its integrability is calculated.

• The diagonal lift gD of Riemannian metric g to the frame bundle FM is
adopted to tensor field Fα.

• The fundamental 2-Form Ωα of the tensor field Fα is determined.

• The horizontal lift FH of metallic structure Fα i.e F 2
α − pFα − qI = 0 to the

frame bundle FM is integrable with certain conditions.

• An example of the golden structure is constructed that is a particular case of
metallic structure on FM .

The structure of the paper is as follows: Section 2 presents a brief account of
frame bundle, metallic structure and Nijenhuis tensor. In Section 3, a tensor field
Fα, α = 1, 2..., n of type (1,1) is defined and showed that it is a metallic structure on
the frame bundle FM . Integrability, diagonal lift gD of a Riemannian metric g and
the fundamental 2-Form of a metallic structure Fα on the frame bundle FM are
also obtained. In Section 4, an application of the horizontal lift FH

α of a metallic
structure Fα on the frame bundle FM is investigated. Finally, in Section 5, an
example of the golden structure is constructed.
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2. Preliminaries

Let M be an n-dimensional differentiable manifold of class C∞ and FM its
frame bundle over the manifold M . Suppose the base space M is covered by a
system of coordinate neighborhoods (U, xi) such that F (U) = π−1(U) where (xi)
is a system of local coordinates defined in the neighborhood U and π : FM → M

the projection map. The local components of the vector Xα of the frame px ∈ U

are given by Xα = X i
α

(

∂
∂xi

)

x
. Thus {FU, (xi, X i

α)} is a coordinate system in FM

[4, 18, 19] .
Let ∇ be a linear connection and X a vector field on M with local components

Γh
ij and X i, respectively. Let vector fields XH and Xα, α = 1, 2, ....n. be the

horizontal lift and the αth-vertical lift of X on FM and defined by

XH = X i ∂

∂xi
−X iΓh

ikX
k
α

∂

∂xh
,(2.1)

X(α) = X i ∂

∂X i
α

.(2.2)

Let f be a differentiable function on M , we write fV for function i.e. vertical
lift in FM and fH = 0 its horizontal lift [3].

If F is a tensor field on M of type (1,1) with components Fh
j in U , then

(2.3) FH = Fh
j

∂

∂Xh
⊗ dxj +Xk

α(Γ
i
jkF

h
i − Γh

ikF
i
j )

∂

∂Xh
α

⊗ dxj + δβαF
h
j

∂

∂Xh
α

⊗ dX
j
β

is local components of FH in FU .
Let τ be a 1-form on M with local components τi in U , then

τV = τidx
i,

τHα = Xj
αΓ

h
ijτhdx

i + τidX
i
α,(2.4)

XH =

m
∑

α=1

(Xj
αΓ

h
ijτhdx

i + τidX
i
α)

are local components of τV , τHα and XH in FU .
The following formulas of horizontal and vertical lifts are given by

XH(fV ) = (X(f))V ,

X(α)(fV ) = 0,

FH(X(α)) = (F (X))α,

FH(XH) = (F (X))H ,

FH(λA) = FC(λA) = λ(F ◦A),(2.5)

τV (XH) = (F (X))V ,

τV (X(α)) = 0,

τHα(XH) = 0,

τHα(X(β)) = δβα(τ(X))V ,
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for all vector fields X,Y on M and λA is fundamental vector field associated to A

where A ∈ gl(n,ℜ), gl(n,ℜ) is general linear group and ℜ is Euclidean space [4, 15].

The brackets of vertical and horizontal lifts are expressed by the following for-
mulas

[X(α), Y (β)] = 0,(2.6)

[XH , Y (α)] = (∇XY )(α),

[XH , Y H ] = [XH , Y H ]− γR(X,Y ),

where R(X,Y ) = [∇X ,∇Y ]−∇[X,Y ].

Definition 2.1. Let F be a tensor field of type (1,1) on a differentiable manifold
M and satisfies the equation

(2.7) F 2 − pF − qI = 0,

where p, q are positive integers and I is an identity operator. Then the tensor field
F is called a metallic structure on M and (M,F ) is called a metallic manifold [1].

The Nijenhuis tensor N of a metallic structure F is given by

(2.8) N(X,Y ) = [FX,FY ]− F [FX, Y ]− F [X,FY ] + F 2[X,Y ].

where X and Y are vector fields on a differentiable manifold M . The metallic
structure F is called integrable if N(X,Y ) = 0 [28, 29].

3. Integrability of Metallic Structure on the Frame Bundle

In this section, a tensor field Fα, α = 1, 2, ...,m of type (1,1) is introduced and
proved that it is a metallic structure on the frame bundle FM . The integrability
of a metallic structure Fα on FM has been studied. Furthermore, the fundamental
2-form Ωα, α = 1, 2..., n of Fα is determined.

3.1. Metallic structures on the frame bundle

Let (M, g) be an n-dimensional Riemannian manifold and FM its frame bundle.
Let XH and X(α), α = 1, 2, ..., n, be horizontal and vertical lifts of a vector field X

on FM with respect to the Levi-Civita connection ∇ of a Riemannian metric g.

In [4], Cordero et al defined a tensor field Fα, α = 1, 2, ...., n of type (1,1) on
FM as

(3.1) FαX
H = −X(α), FαX

(β) = δβαX
H ,

where XH and X(α) are ‘the horizontal lift’ and ‘α−th vertical lift’ of a vector field
X on M . It is proved that F 3

α + Fα = 0 i.e. F -structure.
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Also, Gezer and Kamran [23] defined a tensor field J̃ of type (1,1) in the tangent
bundle TM of M by

J̃XH =
1

2
(αXH + (2σβ

α − α)(X ⊗ ẼV ),

J̃XV =
1

2
(α(X ⊗ ẼV + (2σβ

α − α)XH),

J̃AV = σβ
αA

V ,

for any vector field X , tensor field A of type (1,1), Ẽ = g ◦ E and g a Riemannian
metric on M . It is proved that J̃ is a metallic structure on TM .

From Cordero et al [4] and Gezer and Kamran [23], a tensor field Fα, α =
1, 2, ..., n, of type (1,1) in FM is introduced as

FαX
H =

1

2
{pXH + (2θqp − p)X(α)},

FαX
(β) =

1

2
δβα{pX(β) + (2θqp − p)XH},(3.2)

where θqp =
p+

√
p2+4q

2 .

Theorem 3.1. Let FM be the frame bundle of M . Then a tensor field Fα, defined
by equation (3.2), is a metallic structure on FM .

Proof. In order to prove Fα is a metallic structure, it suffices to show that F 2
α −

pFα − qI = 0.
In the view of equation (3.2), then

(F 2
α − pFα − qI)XH = Fα(FαX

H)− pFαX
H − qXH ,

= Fα

1

2
{pXH + (2θqp − p)X(α)}

− p

2
{pXH + (2θqp − p)X(α)} − qXH ,

=
p

4
{pXH + (2θqp − p)X(α)}

+
(2θqp − p)

4
{pX(β) + (2θqp − p)XH}

− p

2
{pXH + (2θqp − p)X(α)} − qXH ,

= 0.

Similarly, it is easily proved that (F 2
α − pFα − qI)X(α) = 0 which imply that F 2

α −
pFα − qI = 0.

Hence, Fα is a metallic structure on FM . 2
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The rank of Fα is constant and equal to 2n and rank of metallic structure
F 2
α − pFα − qI = 0 is equal to 2n on FM .

Define the projection operators by [14]

lα =
F 2
α − pFα

q
,(3.3)

mα = I − F 2
α − pFα

q
,(3.4)

then there exists on FM the complementary distributions Lα andMα corresponding
to lα and mα, respectively. When the rank of Fα is 2n. Then dim of Lα = 2n and
dim of Mα = n2 − n.

Theorem 3.2. Let a tensor field Fα be a metallic structure and lα and mα be
projection operators on FM . Then

lα +mα = I, l2α = lα, m2
α = mα, lαmα = mαlα = 0,(3.5)

Fαlα = lαFα = Fα, Fαmα = mαFα = 0.(3.6)

Proof. Using equations (3.3) and (3.4), it can be easily proved. 2

3.2. Integrability

To study of integrability and partial integrability of metallic structure Fα on
FM , first state the following propositions for later use [3]:

Proposition 3.3.([4]) Let H be a tensor field of type (1,1) on M . Then

(i) Fα(γH) = σαH,(3.7)

(ii) Fα(σαH) = −γαH,(3.8)

where σH and γH are horizontal and vertical lifts on FM , respectively.

Theorem 3.4. Let XH and X(α), α = 1, 2, ..., n, be horizontal and vertical lifts of
a vector field X on FM with respect to the Levi-Civita connection of g. If

lα(X
H) = XH , lα(X

(β)) = δβαX
(β)),(3.9)

mα(X
H) = 0, mα(X

(β)) = q(I − δβα)X
(β).(3.10)

Then {XH , X(α)} span Lα and {X(β);β 6= 0} span Mα

Proof. Operating XH and X(α) on equation (3.3) and using equation (3.2), then

lα(X
H) =

1

q
F 2
α(X

H)− p

q
Fα(X

H),

=
1

2q
Fα[pX

H + (2θqp − p)X(α)]− p

2q
[pXH + (2θqp − p)X(α)],

=
p

2q
Fα(X

H) + (2θqp − p)FαX
(α)]− p2

2q
XH − (2θqp − p)

p

2q
X(α)],

= XH .
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Similarly, other identities can be easily obtained.

Thus {XH , X(α)} span Lα and {X(β);β 6= 0} span Mα 2

In the view of Proposition 3.3, the complementary distribution Mα is always
completely integrable. Integrability of the complementary distribution Lα is ob-
tained by the following Theorem:

Theorem 3.5. The complementary distribution Lα is completely integrable if and
only if (M, g) is locally Euclidean.

Theorem 3.6. Let XH and X(α), α = 1, 2, ..., n, be horizontal and vertical lifts of
a vector field X on FM . The Nijenhuis tensor NFα

of Fα is given by

(i) NFα
(XH , Y H) = −p2

2
γαR(X,Y )− qγαR(X,Y ) + q[X,Y ]H ,

(ii) NFα
(XH , Y (α)) = −

p(2θqp − p)

4
γαR(X,Y ) +

(2θqp − p)

2
σαR(X,Y ),

(iii) NFα
(X(β), Y (µ)) = −δβαδ

µ
α

p(2θqp − p)2

4
γR(X,Y ).

for all vector fields X,Y, Z on M , and 1 ≤ β ≤ n.

Proof. Let X̃ and Ỹ be vector fields on the frame bundle FM and NFα
be Nijenhuis

tensor of a tensor field Fα of type (1,1) is given by

(3.11) ÑFα
(X̃, Ỹ ) = [FαX̃, FαỸ ]− Fα[FαX̃, Ỹ ]− Fα[X̃, FαỸ ] + F 2

α[X̃, Ỹ ].

(i) Setting X̃ = XH and Ỹ = Y H in equation (3.11) and using equation (3.2),
then

ÑFα
(XH , Y H) = [FαX

H , FαY
H ]− Fα[FαX

H , Y H ]

−Fα[X
H , FαY

H ] + F 2
α[X

H , Y H ],

= [
1

2
{pXH + (2θqp − p)δβαX

(β)}, 1
2
{pY H + (2θqp − p)δβαY

(β)}]

− Fα[
1

2
{pXH + (2θqp − p)δβαX

(β)}, Y H ],

− [XH ,
1

2
{pY H + (2θqp − p)δβαY

(β)}] + F 2
α{[X,Y ]H − γR(X,Y )},

= −p2

2
γαR(X,Y )− qγαR(X,Y ) + q[X,Y ]H .

(ii) Setting X̃ = XH and Ỹ = Y (β) in equation (3.11) and using equation (3.2),
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then

ÑFα
(XH , Y (β)) = [FαX

H , FαY
(β)]− Fα[FαX

H , Y (β)]

−Fα[X
H , FαY

(β)] + F 2
α[X

H , Y (β)],

= [
1

2
{pXH + (2θqp − p)δβαX

(β)}, 1
2
{pδβαY (β) + (2θqp − p)Y H}]

− Fα[
1

2
{pXH + (2θqp − p)δβαX

(β)}, Y (β)]

− Fα[X
H ,

1

2
{pδβαY (β) + (2θqp − p)δβαY

H}]

+F 2
α{[X,Y ]H − γR(X,Y )},

= −
p(2θqp − p)

4
γαR(X,Y ) +

(2θqp − p)

2
σαR(X,Y ).

(iii) Setting X̃ = X(β) and Ỹ = Y (µ) in equation (3.11) and using equation (3.2),
then

ÑFα
(X(β), Y (µ)) = [FαX

(β), FαY
(µ)]− Fα[FαX

(β), Y (µ)]− Fα[X
(β), FαY

(µ)]

+ F 2
α[X

(β), Y (µ)],

= [
1

2
{pδβαX(β) + (2θqp − p)XH}, 1

2
{pδµαY (µ) + (2θqp − p)Y H}]

− Fα[
1

2
{pδβαX(β) + (2θqp − p)XH}, Y (µ)]

− Fα[X
H ,

1

2
{pδβαY (µ) + (2θqp − p)Y H}], as [X(β), Y (µ)] = 0,

= −δβαδ
µ
α

p(2θqp − p)2

4
γR(X,Y ).

2

Theorem 3.7. The following statements are equivalent:
(i) (M, g) is locally Euclidean;
(ii) Lα is completely integrable;
(iii) Fα is partially integrable;
(iv) Fα is integrable.

Proof. Using Theorem 3.5 and Theorem 3.6, then Theorem 3.7 can be easily ob-
tained. 2

3.3. Diagonal metric and fundamental 2-Form on the frame bundle

Let (M, g) be a Riemannian manifold with the Levi-Civita connection ∇ and
diagonal lift gD of a Riemannian metric g to the frame bundle FM . The diagonal
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lift gD is Riemannian metric on FM [4]. Then

gD(XH , Y H) = {g(X,Y )}V ,
gD(XH , Y (α)) = 0,(3.12)

gD(X(α), Y (β)) = δαβ{g(X,Y )}V ,

where X,Y are vector fields on M,α, β = 1, 2, ...., n.

Definition 3.8. Let Fα be a tensor field of type (1,1) defined (3.2) and gD be the
diagonal lift of g on FM with Levi-Civita connection ∇. The fundamental 2-Form
Ωα of Fα is defined by

(3.13) Ωα(X̃, Ỹ ) = gD(FαX̃, Ỹ ),

where X̃ and Ỹ are vector fields on FM .

Theorem 3.7. Let (FM, gD) be the frame bundle of Riemannian manifold (M, g).
The Riemannian metric gD is adopted to a tensor field Fα on FM .

Proof. Let X̃ be a vector field and gD be a Riemannian metric on FM . Let Lα and
Mα be complementary distributions corresponding to projection operators lα and
mα. Since complementary distributions Lα and Mα are mutually orthogonal with
respect to gD then gD(X̃, FαX̃) = 0.

This completes the proof. 2

Theorem 3.8. Let M be a manifold and FM its frame bundle admits a tensor
field Fα, α = 1, 2, ..., n of type (1,1) defined by (3.2). Then the fundamental 2-Form
Ωα is given by

Ωα(X
H , Y H) =

1

2
p(g(X,Y ))V ,

Ωα(X
H , Y (β)) =

(2θqp − p)

2
δαβ(g(X,Y ))V ,

Ωα(X
(β), Y (µ)) =

(2θqp − p)

2
δβµ(g(X,Y ))V ,

for all vector fields X,Y on M, 1 ≤ β, µ ≤ n.

Proof. (i) Setting X̃ = XH and Ỹ = Y H in equation (3.13) and using equation
(3.2) and (3.12), then

Ωα(X
H , Y H) = gD(FαX

H , Y H),

= gD(
1

2
{pXH + (2θqp − p)X(α)}, Y H),

=
1

2
p(g(X,Y ))V , as gD(X(α), Y H) = 0.
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(ii) Setting X̃ = XH and Ỹ = Y (β) in equation (3.13) and using equations (3.2)
and (3.12), then

Ωα(X
H , Y (β)) = gD(FαX

H , Y (β)),

= gD(
1

2
{pXH + (2θqp − p)X(α)}, Y (β)),

=
(2θqp − p)

2
δαβ(g(X,Y ))V , as gD(XH , Y (β)) = 0.

(iii) Setting X̃ = X(β) and Ỹ = Y (µ) in equation (3.13) and using equations (3.2)
and (3.12), then

Ωα(X
(β), Y (µ)) = gD(FαX

(β), Y (µ)),

= gD(
1

2
δβα{pX(β) + (2θqp − p)XH}, Y (µ)),

=
p

2
δβµ(g(X,Y ))V , as gD(XH , Y (µ)) = 0.

This completes the proof. 2

4. Application

In this section, a study is done on the Nijenhuis tensor NFH
α

of a tensor field

FH
α of type (1,1) on FM is integrable.

Let X̃ and Ỹ be vector fields on the frame bundle FM and NF̃ be Nijenhuis

tensor of a tensor field F̃ of type (1,1) on FM is given by

(4.1) NF̃ (X̃, Ỹ ) = [F̃ X̃, F̃ Ỹ ]− F̃ [F̃ X̃, Ỹ ]− F̃ [X̃, F̃ Ỹ ] + F̃ 2[X̃, Ỹ ],

where Nijenhuis tensor NF̃ is a tensor field of type (1,2).
By using equations (2.5) and (2.6), the following identities have been obtained.

NFH
α
(λA, λB) = 0,

NFH
α
(λA,XH) = λ(Fα∇XFα −∇FαXFα)

◦A,

NFH
α
(XH , Y H) = {NFα

(X,Y )}H − γ(R(FαX,FαY )− FαR(FαX,Y )

− FαR(X,FαY ) + F 2
αR(X,Y )),

for all vector fields X,Y on M and λA is fundamental vector field associated to A

where A ∈ gl(n,ℜ), gl(n,ℜ) is general linear group and R is Euclidean space [4].

Theorem 4.1. Let M be a differentiable manifold of C∞ admitting metallic struc-
ture Fα and FH

α its horizontal lift to FM with respect to ∇ is integrable that is
NFH

α
= 0 if

(i) Fα∇XFα −∇FαXFα = 0 and
(ii)The curvature tensor R of ∇ satisfies

(4.2) R(FαX,FαY ) + (pFα + qI)R(X,Y ) = 0,



Integrability of the Metallic Structures on the Frame Bundle 801

for all vector fields X,Y on M .

Proof. Let M be a differentiable manifold admitting a metallic structure F and
given that

(4.3) Fα∇XFα −∇FαXFα = 0

and the curvature tensor R of ∇ satisfies

(4.4) R(FαX,FαY ) + (pFα + qI)R(X,Y ) = 0.

Replace X by FαX in equation (4.4) and using F 2
α − pFα − qI = 0, the obtained

equation is

(4.5) R(X,FαY ) +R(FαX,Y ) = 0, pFα + qI 6= 0.

Making use of equations (2.7), (4.3), (4.4), (4.5) in equation (4.1), we get

NFH
α
(λA, λB) = 0,

NFH
α
(λA,XH) = 0,

NFH
α
(XH , Y H) = 0.

Thus NFH
α

= 0,

so, FH is integrable.
This completes the proof. 2

5. Example

Setting p = 1, q = 1 in equation (2.7), then obtained equation is F 2−F −I = 0.
It is named as golden structure which is a particular case of metallic structure [2, 6].

Define a tensor field F ′

α, α = 1, 2, .., n of type (1,1) on FM such that F ′2
α−F ′

α−
I = 0 and equation (3.2) becomes

F ′

αX
H =

1

2
{XH +

√
5X(α)},

F ′

αX
(β) =

1

2
δβα{X(β) +

√
5XH}.(5.1)

The study of golden structure is omitted on FM due to the similarity with a metallic
structure.
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