• 제목/요약/키워드: vertical eccentricity

검색결과 57건 처리시간 0.022초

Effects of vertical component of near-field ground motions on seismic responses of asymmetric structures supported on TCFP bearings

  • Mehr, Nasim Partovi;Khoshnoudian, Faramarz;Tajammolian, Hamed
    • Smart Structures and Systems
    • /
    • 제20권6호
    • /
    • pp.641-656
    • /
    • 2017
  • The effects of vertical component of earthquakes on torsional amplification due to mass eccentricity in seismic responses of base-isolated structures subjected to near-field ground motions are studied in this paper. 3-, 6- and 9-story superstructures and aspect ratios of 1, 2 and 3 have been modeled as steel special moment frames mounted on Triple Concave Friction Pendulum (TCFP) bearings considering different period and damping ratios. Three-dimensional linear superstructures resting on nonlinear isolators are subjected to both 2 and 3 component near-field ground motions. Effects of mass eccentricity and vertical component of 25 near-field earthquakes on the seismic responses including maximum isolator displacement and base shear as well as peak superstructure acceleration are studied. The results indicate that the effect of vertical component on the responses of asymmetric structures, especially on the base shear is significant. Therefore, it can be claimed that in the absence of the vertical component, mass eccentricity has a little effect on the base shear increase. Additionally, the impact of this component on acceleration is remarkable so the roof acceleration of a nine-story structure has been increased 1.67 times, compared to the case that the structure is subjected to only horizontal components of earthquakes.

Lateral-torsional seismic behaviour of plan unsymmetric buildings

  • Tamizharasi, G.;Prasad, A. Meher;Murty, C.V.R.
    • Earthquakes and Structures
    • /
    • 제20권3호
    • /
    • pp.239-260
    • /
    • 2021
  • Torsional response of buildings is attributed to poor structural configurations in plan, which arises due to two factors - torsional eccentricity and torsional flexibility. Usually, building codes address effects due to the former. This study examines both of these effects. Buildings with torsional eccentricity (e.g., those with large eccentricity) and with torsional flexibility (those with torsional mode as a fundamental mode) demand large deformations of vertical elements resisting lateral loads, especially those along the building perimeter in plan. Lateral-torsional responses are studied of unsymmetrical buildings through elastic and inelastic analyses using idealised single-storey building models (with two degrees of freedom). Displacement demands on vertical elements distributed in plan are non-uniform and sensitive to characteristics of both structure and earthquake ground motion. Limits are proposed to mitigate lateral-torsional effects, which guides in proportioning vertical elements and restricts amplification of lateral displacement in them and to avoid torsional mode as the first mode. Nonlinear static and dynamic analyses of multi-storey buildings are used to validate the limits proposed.

원형공간내 열분해 연료의 공간배치가 연소현상에 미치는 영향 (Influence of Pyrolyzing Fuel Disposition on Combustion Phenomena in a Cylindrical Enclosure)

  • 한조영;김정수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.680-685
    • /
    • 2000
  • Investigation on ignition and flame propagation of pyrolyzing fuel in a cylindrical enclosure is accomplished. The pyrolyzing fuel of cylindrical shape is located in an outer cylinder sustained at high-temperature. Due to gravity, the buoyancy motion is inevitably incurred in the enclosure and this affects the flame initiation and propagation behavior. The radiative heat transfer plays an important role since a high temperature difference is involved in the problem. Numerical studies have been performed over overheat ratio, and vertical fuel eccentricity. The location of flame onset is affected by the vertical eccentricity of inner pyrolyzing fuel as well as thermal conditions applied.

  • PDF

Evaluation of accidental eccentricity for buildings by artificial neural networks

  • Badaoui, M.;Chateauneuf, A.;Fournely, E.;Bourahla, N.;Bensaibi, M.
    • Structural Engineering and Mechanics
    • /
    • 제41권4호
    • /
    • pp.527-538
    • /
    • 2012
  • In seismic analyses of structures, additional eccentricity is introduced to take account for oscillations of random and unknown origins. In many codes of practice, the torsion about the vertical axis is considered through empirical accidental eccentricity formulation. Due to the random nature of structural systems, it is very difficult to evaluate the accidental eccentricity in a deterministic way and to specify its effect on the overall seismic response of structures. The aim of this study is to develop a procedure for the evaluation of the accidental eccentricity induced by uncertainties in stiffness and mass of structural members, using the neural network techniques coupled with Monte Carlo simulations. This method gives very interesting results for single story structures. For real structures, this method can be used as a tool to determine the accidental eccentricity in the seismic vulnerability studies of buildings.

Bearing capacity of shallow footing under combined loading

  • Kusakabe, Osamu;Takeyama, Tomohide
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회
    • /
    • pp.3-25
    • /
    • 2010
  • The paper deals with two bearing capacity problems of shallow footing under combined loading. The first is a FEM study of shallow strip footing on two-layer clay deposits subjected to a vertical, horizontal and moment combined loading, while the second is a centrifuge study of shallow rectangular footing on dry sand under double eccentricity. The FEM results revealed that the existence of top soft layer sensitively affects more on horizontal and moment capacity than vertical capacity for cases of footing on soft clay overlying stiff clay. Practical design charts are presented to evaluate bearing capacities of footing for various combinations of the ratio of the depth of the upper layer to the footing width and the ratio of undrained strength of the upper layer to that of the lower. The centrifuge tests indicated that current design practice of calculating failure load of rectangular surface footing under double eccentricity underestimates the centrifuge loading test data. This trend is more marked when the eccentricity becomes larger. The decreasing trend in failure load with an increase of double eccentricity is rather uniquely expressed by a single curve, using a newly defined resultant eccentricity and the diagonal length of the footing base.

  • PDF

원형공간내 열분해 연료의 위치변화에 따른 점화 및 화염전파 영향 (Effect of Pyrolyzing Fuel Position on Ignition and Flame Propagation in a Cylindrical Enclosure)

  • 한조영;김정수
    • 대한기계학회논문집B
    • /
    • 제25권1호
    • /
    • pp.133-142
    • /
    • 2001
  • Investigation on ignition and flame propagation of pyrolyzing fuel in a cylindrical enclosure is accomplished. The pyrolyzing fuel of cylindrical shape is located in an outer cylinder sustained at high-temperature. Due to gravity, the buoyancy motion is inevitably incurred in the enclosure and this affects the flame initiation and propagation behavior. The radiative heat transfer plays an important role since a high temperature difference is involved in the problem. Therefore in all cases presented here, the intrinsic radiation effects are considered. Numerical studies have been performed over various governing parameters, such as Grashof number, overheat ratio, and vertical fuel eccentricity. Depending on the Grashof number, the flame behavior is found to be totally different: a separated visible flame appears as the Grashof number reaches 10(sup)7. The location of flame onset is also affected by the vertical eccentricity of inner pyrolyzing fuel as well as thermal conditions applied.

A method for earthquake response analysis of tall flexible structure

  • Liu, Tielin;Jiang, Yingchun;Luan, Yu
    • Earthquakes and Structures
    • /
    • 제4권2호
    • /
    • pp.133-155
    • /
    • 2013
  • The earthquake responses are studied for the tall flexible structures such as TV towers when the vertical eccentricities between the discrete nodes and the corresponding centroids of investigated lumps are considered. In practical analyses, the tall flexible structures can be made into a spatial-discrete system of some certain length of beam elements with different lengths and cross-sectional areas. These elements are used to construct the investigated lumps in this paper. The different cross-sectional areas and the different lengths of two adjacent elements lead to the appearance of vertical eccentricity between the discrete node and the centroid of investigated lump within the same investigated lump. Firstly, the governing equations are established for a typical investigated lump. Secondly, the calculating formulae of the forces and moments acting on the investigated lump are derived and provided. Finally the new dynamic equilibrium equations with modified mass matrix and assemblage of stiffness matrix have been derived for the stick MDOF model based on beam theory when the existing vertical eccentricities are considered. Numerical results demonstrate that these vertical eccentricities should be considered in order to obtain the accurate earthquake responses for the tall flexible structures.

수력 원통형 터빈 가이드 베어링의 저부하/저편심 성능향상 설계 - 패드 선단 테이퍼의 도입 (Low-Load/Low-Eccentricity Performance Improvement Designs for Hydro Power Application of Cylindrical Turbine Guide Bearings - Introduction of Pad Leading-Edge Tapers)

  • 이안성;장선용
    • Tribology and Lubricants
    • /
    • 제33권2호
    • /
    • pp.65-70
    • /
    • 2017
  • In vertical hydro/hydraulic power turbine-generator applications, traditionally, cylindrical turbine guide bearings (TGBs) are widely used to provide turbine runner shafts with smooth rotation guides and supports. All existing cylindrical TGBs with simple plain pads have drawbacks such as having no pressure generation and film stiffness at the no-load condition and in addition, at the low-load/low-eccentricity condition, having very low film stiffness values and lacking design credibility in the stiffness values themselves. In this paper, in order to fundamentally improve the low-load/low-eccentricity performance of conventional cylindrical TGBs and thus enhance their design-application availability and usefulness, we propose to introduce a rotation-directional leading-edge taper to each partitioned pad, i.e., a pad leading-edge taper. We perform a design analysis of lubrication performance on $4-Pad{\times}4-Row$ cylindrical TGBs to verify an engineering/technical usefulness of the proposed pad leading-edge taper. Analysis results show that by introducing the leading-edge taper to each pad of the cylindrical TGB one can expect a constant high average direct stiffness with a high degree of design credibility, regardless of load value, even at the low-load/low-eccentricity condition and also control the average direct stiffness value by exploring the taper height as a design parameter. Therefore, we conclude that the proposed pad leading-edge tapers are greatly effective in more accurately predicting and controlling rotordynamic characteristics of vertical hydro-power turbine-generator rotor-bearing systems to which cylindrical TGBs are applied.

고층 RC 벽식 비정형 구조물의 지진반응에 대한 비틀림 편심의 효과 (Effect of Torsional Eccentricity on the Seismic Response of High-Rise RC Bearing-Wall Structures with Vertical Irregularity)

  • 고동우;이한선
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.145-150
    • /
    • 2003
  • The objective of this study is to investigate the effect of torsional eccentricity on the seismic response of high-rise RC bearing-wall structures with vertical irregularity. For this purpose, two 1:12 scale 17-story RC model structures, the one has concentric shear wall and the other has eccentric shear wall, were constructed and then subjected to a series of earthquake excitations. The test result shows the followings: 1) the layout of shear wall has the negligible effect on the natural period and the base shear coefficient, 2) the eccentric model behaves in the first and second mode while the concentric model has the first mode predominantly, 3) the stiff frame in the eccentric model resists most of overturning moment in the severe earthquake though both frames (the stiff and flexible frames) resist almost equally in the design earthquake.

  • PDF

설계편심의 크기에 따른 비틀림 비정형 건물의 최종 정적편심 크기의 비교에 관한 연구 (A Study on the Static Eccentricities of Buildings Designed by Different Design Eccentricities)

  • 이광호;정성훈
    • 한국지진공학회논문집
    • /
    • 제16권5호
    • /
    • pp.33-40
    • /
    • 2012
  • 지진하중에 의해 발생하는 비정형 건물의 피해를 줄이기 위하여 내진설계기준에서는 비틀림 증폭계수를 도입하였다. 이 계수는 내진설계기준에 따라 다르게 적용되었으며 같은 시기의 설계기준에서조차 다르게 적용되었다. 본 연구에서는 서로 다른 설계편심으로 설계된 건물의 최종 정적편심의 크기, 연약단부의 횡강성과 비틀림 강성비를 비교하였다. 비틀림 증폭계수가 증가할수록 연약단부의 횡강성이 증가하여 건물의 최종 정적편심의 크기는 감소하였으나 이 계수가 최대값 3.0에 도달한 이후부터 건물의 최종 정적편심의 크기는 다시 증가하였다. 우발편심과 정적편심의 합에 비틀림 증폭계수를 곱하여 구한 설계편심으로 설계된 건물의 최종 정적편심의 크기는 수직부재의 위치에 따라 0 또는 음수로 측정되었다.