• Title/Summary/Keyword: vertical earthquake

Search Result 466, Processing Time 0.023 seconds

Impact of fine fillers on flowability, fiber dispersion, strength, and tensile strain hardening of UHPC

  • Chung-Chan Hung;Kuo-Wei Wen;Yueh-Ting Chen
    • Advances in concrete construction
    • /
    • v.15 no.6
    • /
    • pp.405-417
    • /
    • 2023
  • While ultra-high performance concrete (UHPC) is commonly reinforced with micro straight steel fibers in existing applications, studies have indicated that the use of deformed steel macro-fibers leads to enhanced ductility and post-peak responses for UHPC structural elements, which is of particular importance for earthquake-resistant structures. However, there are potential concerns regarding the use of UHPC reinforced with macro-fibers due to the issues of workability and fiber distribution. The objective of this study was to address these issues by extensively investigating the restricted and non-restricted deformability, filling ability, horizontal and vertical velocities, and passing ability of UHPC containing macro hooked-end steel fibers. A new approach is suggested to examine the homogeneity of fiber distribution in UHPC. The influences of ultra-fine fillers and steel macro-fibers on the workability of fresh UHPC and the mechanics of hardened UHPC were examined. It was found that although increasing the ratio of quartz powder to cement led to an improvement in the workability and tensile strain hardening behavior of UHPC, it reduced the fiber distribution homogeneity. The addition of 1% volume fraction of macro-fibers in UHPC improved workability, but reduced its compressive strength, which is contrary to the effect of micro-fiber inclusion in UHPC.

Damage evaluation of masonry buildings during Kahramanmaraş (Türkiye) earthquakes on February 06, 2023

  • Ercan Isik;Aydin Buyuksarac;Fatih Avcil;Enes Arkan;M.Cihan Aydin;Ali Emre Ulu
    • Earthquakes and Structures
    • /
    • v.25 no.3
    • /
    • pp.209-221
    • /
    • 2023
  • The Mw=7.7 (Pazarcık-Kahramanmaraş) and Mw=7.6 (Elbistan-Kahramanmaraş) earthquakes that occurred in Türkiye on 06.02.2023 with 9 hours' intervals, caused great losses of life and property as the biggest catastrophe in the instrumental period. The earthquakes affecting an area of 14% of the country were enormous and caused a great deal of loss of life and damage. Numerous buildings have collapsed or damaged at different levels, both in the city centers and in rural areas. Within the scope of this study, masonry structure damage built from different types of materials in the earthquake region was taken into consideration. In this study, the damage and causes of such masonry structures that do not generally receive engineering services were examined and explained in detail. Insufficient interlocking between wall-wall and wall-roof, inadequate masonry, lack of horizontal and vertical bond beams, usage of low-strength materials, poor workmanship, and heavy earthen roof are commonly caused to structural damages. Separation at the corner point and out-of-plane mechanism in structural walls, and heavy earthen roof damages are common types of damage in masonry structures.

Analysis of the Static Behavior of Tilted Structure with Dual-Core by Core Location (이중코어를 가진 경사진 형상 구조물의 코어 배치에 따른 역학적 거동 분석)

  • Kim, Min-Seok;Lee, Da-Hye;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.3
    • /
    • pp.71-78
    • /
    • 2023
  • Recently, Free-Form and Irregular Shape high-rise buildings are constructed by IT technology development. Tilted shaped high-rise building which is one of Irregular shape high-rise buildings can cause lateral displacement by gravity load and lateral load due to tilted elevation shape. Therefore, it is necessary to review the behavior and structural aspects of the Tilted shape high-rise building by gravity load. In this paper, the dynamic characteristics of a tilted structure with a dual-core were analyzed with the core location as a design variable, and response behavior, vulnerable members, and vulnerable layers to earthquake loads were analyzed. As a result of the analysis, as the location of the core moved in an tilted direction, the eccentric distance and eccentric load decreased, reducing the axial force of the vertical members. However, the location of the core had little effect on the response.

A study on the seismic performance of reinforced concrete frames with dry stack masonry wall using concrete block

  • Joong-Won Lee;Kwang-Ho Choi
    • Earthquakes and Structures
    • /
    • v.24 no.3
    • /
    • pp.205-215
    • /
    • 2023
  • Currently, many studies are underway at home and abroad on the seismic performance evaluation and dry construction method of the masonry structure. In this study, a dry stack masonry wall system without mortar using concrete blocks is proposed, and investigate the seismic performance of dry filling wall frames through experimental studies. First, two types of standard blocks and key blocks were designed to assemble dry walls of concrete blocks. And then, three types of experiments were manufactured, including pure frame, 1/2 height filling wall frame, and full height filling wall frame, and cyclic load experiments in horizontal direction were performed to analyze crack patterns, load displacement history, rebar deformation yield, effective stiffness change, displacement ductility, and energy dissipation capacity. According to the experimental results, the full height filling wall frame had the largest horizontal resistance against the earthquake load and showed a high energy dissipation capacity. However, the 1/2 height filling wall frame requires attention because the filling wall constrains the effective span of the column, limiting the horizontal displacement of the frame. In addition, the concrete block was firmly assembled in the vertical direction of the wall as the horizontal movement between the concrete blocks was allowed within installation margin, and there was no dropping of the assembled concrete block.

A study on the improvement plan for precision safety diagnosis and seismic repair and reinforcement measures according to seismic performance evaluation (내진성능평가에 따른 정밀안전진단 및 내진 보수보강 조치의 개선방안 연구)

  • Kim, Jang-Ook
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.87-88
    • /
    • 2022
  • For an earthquake-safe urban environment, the Republic of Korea conducts seismic performance evaluation in accordance with laws and guidelines to assign safety ratings and implement necessary management measures such as repairs and reinforcements. In the seismic performance evaluation result, structures lacking in preparation for earthquakes are prioritized and classified into measures such as repair, reinforcement, or careful observation to respond to physical risks such as earthquakes. Such repair and reinforcement work is not a one-time thing, but it is necessary to further enhance the effect through continuous follow-up observation. In this study, the location of the vertical and horizontal displacement measuring part of the construction part is displayed so that the post-construction status of the reinforcement construction part can be visually checked by identifying the problems in the process of post-monitoring in 2022 for the maintenance and reinforcement work of local governments' public facilities carried out in 2021. We propose a plan to institutionalize the installation of, inspection tools, and crack gauges at certain locations in the construction department, and to have facility managers periodically inspect and manage them with a smartphone program or the 'Facility Autonomous Safety Inspection' app.

  • PDF

Seismic Response Analysis of Dome-Shaped Large Spatial Structures According to TMD Installation (TMD 설치에 따른 돔 형상 대공간 구조물의 지진응답분석)

  • Ku, Seung-Yeon;Yoo, Sang-Ho;Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.4
    • /
    • pp.27-34
    • /
    • 2023
  • In this study, the seismic response characteristics of the three analysis model with or without TMD were investigated to find out the effective dome shape. The three analysis models are rib type, lattice type and geodesic type dome structure composed of space frame. The maximum vertical and horizontal displacements were evaluated at 1/4 point of the span by applying the resonance harmonic load and historical earthquake loads (El Centro, Kobe, Northridge earthquakes). The study of the effective TMD installation position for the dome structure shows that seismic response control was effective when eight TMDs were installed in all types of analysis model. The investigation of the efficiency of TMD according to dome shape presents that lattice dome and geodesic dome show excellent control performance, while rib dome shows different control performance depending on the historical seismic loads. Therefore, lattice and geodesic types are desirable for seismic response reduction using TMD compared to rib type.

Buckling Experiment of Eccentric Seismic Bracing Devices for Branch Lines (내진설계용 편심방식 가지배관 고정장치의 좌굴 실험)

  • Changsoo, Oh;Jihoon, Kim;Hasung Kong
    • Journal of the Korea Safety Management & Science
    • /
    • v.26 no.1
    • /
    • pp.9-14
    • /
    • 2024
  • Restraints of Branch Lines are used as earthquake-resistant support devices for fire-fighting pipes along with sway brace devices. The central types are aligned and fixed in a straight line with center of the pipe, but the eccentric types are fixed to on side of the pipe, so a bending moment occurs. In this study, three specimens each of central type and eccentric type were installed at an angle of 45° from the vertical and a monotonic compression load of 1340N was applied. All central type samples satisfied 17.8mm of the allowable displacement, but all eccentric type samples failed to meet the target load and buckled. Therefore, when considering the performance of eccentric type restraints, both compressive load and bending moment must be considered. Even through material mechanics calculations, the yield stress of eccentric type - 3/8 inch all threaded steel bolt - exceeds 320Mpa of the allowable stress. A experiment standards need to be established for eccentric type restraints.

Load-level isolator model for pallets on industrial storage racks and validation with experimental results

  • Marcelo Sanhueza-Cartes;Nelson Maureira-Carsalade;Eduardo Nunez;Angel Roco-Videla
    • Steel and Composite Structures
    • /
    • v.52 no.1
    • /
    • pp.1-14
    • /
    • 2024
  • This paper introduces a system allows for seismic isolation of the pallet from the rack in the down-aisle direction, occupies minimal vertical space (5 cm) and ±7.5 cm of deformation range. A conceptual model of the isolation system is presented, leading to a constitutive equation governing its behavior. A first experimental campaign studying the response of the isolation system's components was conducted to calibrate the parameters of its constitutive equation. A second experimental campaign evaluated the response of the isolation system with mass placed on it, subjected to cyclic loading. The results of this second campaign were compared with the numerical predictions using the pre-calibrated constitutive equation, allowing a double-blind validation of the constitutive equation of the isolation system. Finally, a numerical evaluation of the isolation system subjected to a synthetic earthquake of one component. This evaluation allowed verifying attributes of the proposed isolation system, such as its self-centering capacity and its effectiveness in reducing the absolute acceleration of the isolated mass and the shear load transmitted to the supporting beams of the rack.

Seismic performance of hybrid isolation plate-shell integrated concrete LSS

  • Lei Qi;Xuansheng Cheng;Shanglong Zhang;Yuyue Bu;Bingbing Luo
    • Earthquakes and Structures
    • /
    • v.27 no.1
    • /
    • pp.57-67
    • /
    • 2024
  • To assess the seismic performance of Plate-Shell Integrated Concrete Liquid-Storage Structure (PSICLSS), a scaled test model was constructed. This model incorporated a hybrid isolation system, which combined shape memory alloy (SMA), lead-cored rubber isolation bearing (LRB) and sliding isolation bearing (SB). By conducting shaking table test, the dynamic responses of both non-isolated and hybrid-isolated PSICLSS were analyzed. The results show that the hybrid isolation system can effectively reduce the acceleration and displacement responses of the structure. However, it also results in an increase in local hydrodynamic pressure and liquid sloshing height. Under extreme earthquake action, the displacement of isolation layer is small. When vertical ground motion is taken into account, the shock absorption rate of horizontal acceleration decreases. The peak hydrodynamic pressure increases significantly, and the peak hydrodynamic pressure position also changes. The maximum displacement of isolation layer increases, the residual displacement decreases.

Damage identification of masonry arch bridge under blast loading using smoothed particle hydrodynamics (SPH) method

  • Amin Bagherzadeh Azar;Ali Sari
    • Structural Engineering and Mechanics
    • /
    • v.91 no.1
    • /
    • pp.103-121
    • /
    • 2024
  • The smoothed particle hydrodynamics (SPH) method is a numerical technique used in dynamic analysis to simulate the fluid-like behavior of materials under extreme conditions, such as those encountered in explosions or high velocity impacts. In SPH, fluid or solid materials are discretized into particles. These particles interact with each other based on certain smoothing kernels, allowing the simulation of fluid flows and predict the response of solid materials to shock waves, like deformation, cracking or failure. One of the main advantages of SPH is its ability to simulate these phenomena without a fixed grid, making it particularly suitable for analyzing complex geometries. In this study, the structural damage to a masonry arch bridge subjected to blast loading was investigated. A high-fidelity micro-model was created and the explosives were modeled using the SPH approach. The Johnson-Holmquist II damage model and the Mohr-Coulomb material model were considered to evaluate the masonry and backfill properties. Consistent with the principles of the JH-II model, the authors developed a VUMAT code. The explosive charges (50 kg, 168 kg, 425 kg and 1000 kg) were placed in close proximity to the deck and pier of a bridge. The results showed that the 50 kg charges, which could have been placed near the pier by a terrorist, had only a limited effect on the piers. Instead, this charge caused a vertical displacement of the deck due to the confinement effect. Conversely, a 1000 kg TNT charge placed 100 cm above the deck caused significant damage to the bridge.