DOI QR코드

DOI QR Code

Seismic performance of hybrid isolation plate-shell integrated concrete LSS

  • Lei Qi (Gansu Province Gully Fixing and Table and Protection Engineering Research Center, Longdong University) ;
  • Xuansheng Cheng (Key Laboratory of Disaster Prevention and Mitigation in Civil Engineering of Gansu Province, Lanzhou University of Technology) ;
  • Shanglong Zhang (Key Laboratory of Disaster Prevention and Mitigation in Civil Engineering of Gansu Province, Lanzhou University of Technology) ;
  • Yuyue Bu (Key Laboratory of Disaster Prevention and Mitigation in Civil Engineering of Gansu Province, Lanzhou University of Technology) ;
  • Bingbing Luo (Key Laboratory of Disaster Prevention and Mitigation in Civil Engineering of Gansu Province, Lanzhou University of Technology)
  • Received : 2021.05.26
  • Accepted : 2024.05.02
  • Published : 2024.07.25

Abstract

To assess the seismic performance of Plate-Shell Integrated Concrete Liquid-Storage Structure (PSICLSS), a scaled test model was constructed. This model incorporated a hybrid isolation system, which combined shape memory alloy (SMA), lead-cored rubber isolation bearing (LRB) and sliding isolation bearing (SB). By conducting shaking table test, the dynamic responses of both non-isolated and hybrid-isolated PSICLSS were analyzed. The results show that the hybrid isolation system can effectively reduce the acceleration and displacement responses of the structure. However, it also results in an increase in local hydrodynamic pressure and liquid sloshing height. Under extreme earthquake action, the displacement of isolation layer is small. When vertical ground motion is taken into account, the shock absorption rate of horizontal acceleration decreases. The peak hydrodynamic pressure increases significantly, and the peak hydrodynamic pressure position also changes. The maximum displacement of isolation layer increases, the residual displacement decreases.

Keywords

Acknowledgement

This paper is a part of the National Natural Science Foundation of China (Grant number: 51968045, 51908267, 52168071), Higher Education Innovation Fund Project of Gansu Province, China (Grant number: 2022B-215), Science and Technology Project of Gansu Province, China (Grant number: 22JR5RM211, 20JR10RA132), Science and Technology Plan Project of Qingyang City, China (Grant number: QY-STK-2022A-003), Doctor Fund Program of Longdong University.

References

  1. Alam, M.S., Youssef, M.A. and Nehdi, M. (2007), "Utilizing shape memory alloys to enhance the performance and safety of civil infrastructure: A review", Can. J. Civil Eng., 34(9), 1075-1086. https://doi.org/10.1139/L07-038.
  2. Cheng, X., Jing, W., Qi, L. and Gong, L. (2019b), "Pounding dynamic responses and mitigation measures of sliding base-isolated concrete rectangular liquid storage structures", KSCE J. Civil Eng., 23(7), 3146-3161. https://doi.org/10.1007/s12205-019- 0082-6.
  3. Cheng, X., Qi, L., Jing, W. and Zhang, S. (2021), "Seismic responses and design recommendations for a plate-shell integrated concrete liquid- storage structure", Struct., 2021(32), 461-473. https://doi.org/10.1016/j.istruc.2021.03.061.
  4. Cheng, X.S., He, P.C. and Yu, D.J. (2019a), "Seismic reliability of concrete rectangular liquid-storage structures", Struct. Eng. Mech., 70(5), 563-570. https://doi.org/10.12989/sem.2019.70.5.563.
  5. Choi, E., Nam, T.H. and Cho, B.S. (2005), "A new concept of isolation bearings for highway steel bridges using shape memory alloys", Can. J. Civil Eng., 32(32), 957-967. https://doi.org/10.1139/l05-049.
  6. Coffin, M. and Hirata, N. (2013), "Large earthquake strikes Hokkaido, Japan", EOS Transac. Am. Geophys. Union, 84(42), 442-442. https://doi.org/10.1029/2003EO420003.
  7. Dai, H.Z., Wang, W. and Xiao, Z.G. (2010), "Fluid-structure interactive seismic response and vibration dissipation method of spherical liquid-storage tank", J. Harbin Inst. Technol., 42(4), 515-520.
  8. Deringol, A.H. and Guneyisi, E.M. (2020), "Single and combined use of friction-damped and base-isolated systems in ordinary buildings", J. Constr. Steel Res., 174(106308), 1-18. https://doi.org/10.1016/ j.jcsr.2020.106308.
  9. EERI (Earthquake Engineering Research Institute) (2010), The Mw 8.8 Chile earthquake of February 27, 2010, EERI, Oakland, CA, USA.
  10. Elansary, A.A., Nassef, A.O. and El Damatty, A.A. (2018), "Optimum design of integrated conical tanks under hydrostatic pressure", Adv. Struct. Eng., 21(13), 2030-2044. https://doi.org/10.1177/1369433218764976
  11. Gao, L., Guo, E.D., Wang, X.J., Liu, Z. and Hong, G. (2012), "Earthquake damage analysis of pools in water supply system", J. Nat. Disast., 2012(5), 122-128. https://doi.org/10.1007/s11783-011-0280-z.
  12. Hamdan, F.H. (2000), "Seismic behaviour of cylindrical steel liquid storage tanks", J. Constr. Steel Res., 53(3), 307-333. https://doi.org/10.1016/s0143-974x(99)00039-5.
  13. Jadhav, M.B. and Jangid, R.S. (2004), "Response of base-isolated liquid storage tanks", Shock Vib., 2014(11), 33-45. https://doi.org/10.1155/2004/276030.
  14. Jadhav, MB and Jangid, RS. (2006), "Response of base-isolated liquid storage tanks to near-fault motions", Struct. Eng. Mech., 23(6), 615-634. https://doi.org/10.12989/sem.2006.23.6.615.
  15. Koketsu, K., Hatayama, K., Furumura, T., Ikegami, Y. and Akiyama, S. (2005), "Damaging long-period ground motions from the 2003 MW 8.3 Tokachi- Oki, Japan earthquake", Seismol. Res. Lett., 76(1), 67-73. https://doi.org/10.1785/gssrl.76.1.67.
  16. Lv, X.L., Chen, Y. and Mao, Y.J. (2011), "New concept of structural seismic design: Earthquake resilient structures", J. Tongji Univ. (Nat. Sci.), 39(7), 941-948. https://doi.org/10.3969/j.issn.0253-374x.2011.07.001.
  17. Oliveto, G., Oliveto, N.D. and Athanasiou, A. (2014), "Constrained optimization for 1-D dynamic and earthquake response analysis of hybrid base-isolation systems", Soil Dyn. Earthq. Eng., 2014(67), 44-53. https://doi.org/10.1016/j.soildyn.2014.08.010.
  18. Ozbulut, O.E. and Hurlebaus, S. (2010), "Seismic assessment of bridge structures isolated by a shape memory alloy rubber-based isolation system", Smart Mater. Struct., 20(1), 015003. https://doi.org/10.1088/0964-1726/20/1/015003.
  19. Panchal, VR. and Jangid, RS. (2011), "Seismic response of liquid storage steel tanks with variable frequency pendulum isolator", KSCE J. Civil Eng., 15, 1041-1055. https://doi.org/10.1007/s12205-011-0945-y.
  20. Park, J.H., Bae, D.B. and Oh, C.K. (2016), "Experimental study on the dynamic behavior of a cylindrical liquid storage tank subjected to seismic excitation", Int. J. Steel Struct., 16(3), 935-945. https://doi.org/10.1007/s13296-016-0172-y.
  21. Qi, L., Cheng, X., Zhu, Q. and Zhang, S. (2021), "Seismic characteristic analysis of isolated plate-shell integrated concrete LSS", Eur. J. Environ. Civil Eng., 8(9), 1-19. https://doi.org/10.1080/19648189.2021.1955748.
  22. Rahman, B.A. and Alam, M.S. (2013), "Seismic performance assessment of highway bridges equipped with superelastic shape memory alloy-based laminated rubber isolation bearing", Eng. Struct., 49(4), 396-407. https://doi.org/10.1016/j.engstruct.2012.11.022.
  23. Saha, S.K., Sepahvand, K., Matsagar, V.A., Jain, A.K. and Marburg, S. (2013), "Stochastic analysis of base-isolated liquid storage tanks with uncertain isolator parameters under random exscitation", Eng. Struct., 57(4), 465-474. https://doi.org/10.1016/j.engstruct.2013.09.037.
  24. Seleemah, A.A. and El Sharkawy, M. (2011), "Seismic response of base isolated liquid storage ground tanks", Ain Shams Eng. J., 2(1), 33-42. https://doi.org/10.1016/j.asej.2011.05.001.
  25. Shekari, M.R., Hekmatzadeh, A.A. and Amiri, S.M. (2019), "On the nonlinear dynamic analysis of base-isolated three-dimensional rectangular thin-walled steel tanks equipped with vertical baffle", Thin Wall. Struct., 138(5), 79-94. https://doi.org/10.1016/j.tws.2019.01.037.
  26. Shekari, M.R., Khaji, N. and Ahmadi, M.T. (2009), "A coupled BE-FE study for evaluation of seismically isolated cylindrical liquid storage tanks considering fluid-structure interaction", J. Fluid. Struct., 25(3), 567-585. https://doi.org/10.1016/j.jfluidstructs. 2008.07.005.
  27. Shrimali, M.K. and Jangid, R.S. (2011), "A comparative study of performance of various isolation systems for liquid storage tanks", Int. J. Struct. Stab. Dyn., 2(4), 573-591. https://doi.org/10.1142/S0219455402000725.
  28. Sun, J., Zheng, J., Cui, L., Li, J. and Xu, L. (2013), "Base isolation response spectrum design of LNG storage tank", J. Harbin Inst. Technol., 45(4), 105-109.
  29. Vosoughifar, H. and Naderi, M. (2014), "Numerical analysis of the base-isolated rectangular storage tanks under bi-directional seismic excitation", Brit. J. Mathemat. Comput. Sci., 4(21), 3054-3067. https://doi.org/10.9734/BJMCS/2014/11299
  30. Yang, Z.R., Shou, B.N., Sun, L. and Wang, J.J. (2011), "Earthquake response analysis of spherical tanks with seismic isolation", Procedia Eng., 14(11), 1879-1886. https://doi.org/10.1016/j.proeng.2011.07.236.
  31. Zheng, W., Wang, H., Li, J. and Shen, H. (2020), "Parametric study of superelastic-sliding LRB system for seismic response control of continuous bridges", J. Brid. Eng., 25(9), 04020062. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001596.
  32. Zhou, H. (2018), "Research on integration method in time domain and frequency domain of vibration acceleration signal", Mech. Eng., 322(4), 152-154.