Acknowledgement
This paper is a part of the National Natural Science Foundation of China (Grant number: 51968045, 51908267, 52168071), Higher Education Innovation Fund Project of Gansu Province, China (Grant number: 2022B-215), Science and Technology Project of Gansu Province, China (Grant number: 22JR5RM211, 20JR10RA132), Science and Technology Plan Project of Qingyang City, China (Grant number: QY-STK-2022A-003), Doctor Fund Program of Longdong University.
References
- Alam, M.S., Youssef, M.A. and Nehdi, M. (2007), "Utilizing shape memory alloys to enhance the performance and safety of civil infrastructure: A review", Can. J. Civil Eng., 34(9), 1075-1086. https://doi.org/10.1139/L07-038.
- Cheng, X., Jing, W., Qi, L. and Gong, L. (2019b), "Pounding dynamic responses and mitigation measures of sliding base-isolated concrete rectangular liquid storage structures", KSCE J. Civil Eng., 23(7), 3146-3161. https://doi.org/10.1007/s12205-019- 0082-6.
- Cheng, X., Qi, L., Jing, W. and Zhang, S. (2021), "Seismic responses and design recommendations for a plate-shell integrated concrete liquid- storage structure", Struct., 2021(32), 461-473. https://doi.org/10.1016/j.istruc.2021.03.061.
- Cheng, X.S., He, P.C. and Yu, D.J. (2019a), "Seismic reliability of concrete rectangular liquid-storage structures", Struct. Eng. Mech., 70(5), 563-570. https://doi.org/10.12989/sem.2019.70.5.563.
- Choi, E., Nam, T.H. and Cho, B.S. (2005), "A new concept of isolation bearings for highway steel bridges using shape memory alloys", Can. J. Civil Eng., 32(32), 957-967. https://doi.org/10.1139/l05-049.
- Coffin, M. and Hirata, N. (2013), "Large earthquake strikes Hokkaido, Japan", EOS Transac. Am. Geophys. Union, 84(42), 442-442. https://doi.org/10.1029/2003EO420003.
- Dai, H.Z., Wang, W. and Xiao, Z.G. (2010), "Fluid-structure interactive seismic response and vibration dissipation method of spherical liquid-storage tank", J. Harbin Inst. Technol., 42(4), 515-520.
- Deringol, A.H. and Guneyisi, E.M. (2020), "Single and combined use of friction-damped and base-isolated systems in ordinary buildings", J. Constr. Steel Res., 174(106308), 1-18. https://doi.org/10.1016/ j.jcsr.2020.106308.
- EERI (Earthquake Engineering Research Institute) (2010), The Mw 8.8 Chile earthquake of February 27, 2010, EERI, Oakland, CA, USA.
- Elansary, A.A., Nassef, A.O. and El Damatty, A.A. (2018), "Optimum design of integrated conical tanks under hydrostatic pressure", Adv. Struct. Eng., 21(13), 2030-2044. https://doi.org/10.1177/1369433218764976
- Gao, L., Guo, E.D., Wang, X.J., Liu, Z. and Hong, G. (2012), "Earthquake damage analysis of pools in water supply system", J. Nat. Disast., 2012(5), 122-128. https://doi.org/10.1007/s11783-011-0280-z.
- Hamdan, F.H. (2000), "Seismic behaviour of cylindrical steel liquid storage tanks", J. Constr. Steel Res., 53(3), 307-333. https://doi.org/10.1016/s0143-974x(99)00039-5.
- Jadhav, M.B. and Jangid, R.S. (2004), "Response of base-isolated liquid storage tanks", Shock Vib., 2014(11), 33-45. https://doi.org/10.1155/2004/276030.
- Jadhav, MB and Jangid, RS. (2006), "Response of base-isolated liquid storage tanks to near-fault motions", Struct. Eng. Mech., 23(6), 615-634. https://doi.org/10.12989/sem.2006.23.6.615.
- Koketsu, K., Hatayama, K., Furumura, T., Ikegami, Y. and Akiyama, S. (2005), "Damaging long-period ground motions from the 2003 MW 8.3 Tokachi- Oki, Japan earthquake", Seismol. Res. Lett., 76(1), 67-73. https://doi.org/10.1785/gssrl.76.1.67.
- Lv, X.L., Chen, Y. and Mao, Y.J. (2011), "New concept of structural seismic design: Earthquake resilient structures", J. Tongji Univ. (Nat. Sci.), 39(7), 941-948. https://doi.org/10.3969/j.issn.0253-374x.2011.07.001.
- Oliveto, G., Oliveto, N.D. and Athanasiou, A. (2014), "Constrained optimization for 1-D dynamic and earthquake response analysis of hybrid base-isolation systems", Soil Dyn. Earthq. Eng., 2014(67), 44-53. https://doi.org/10.1016/j.soildyn.2014.08.010.
- Ozbulut, O.E. and Hurlebaus, S. (2010), "Seismic assessment of bridge structures isolated by a shape memory alloy rubber-based isolation system", Smart Mater. Struct., 20(1), 015003. https://doi.org/10.1088/0964-1726/20/1/015003.
- Panchal, VR. and Jangid, RS. (2011), "Seismic response of liquid storage steel tanks with variable frequency pendulum isolator", KSCE J. Civil Eng., 15, 1041-1055. https://doi.org/10.1007/s12205-011-0945-y.
- Park, J.H., Bae, D.B. and Oh, C.K. (2016), "Experimental study on the dynamic behavior of a cylindrical liquid storage tank subjected to seismic excitation", Int. J. Steel Struct., 16(3), 935-945. https://doi.org/10.1007/s13296-016-0172-y.
- Qi, L., Cheng, X., Zhu, Q. and Zhang, S. (2021), "Seismic characteristic analysis of isolated plate-shell integrated concrete LSS", Eur. J. Environ. Civil Eng., 8(9), 1-19. https://doi.org/10.1080/19648189.2021.1955748.
- Rahman, B.A. and Alam, M.S. (2013), "Seismic performance assessment of highway bridges equipped with superelastic shape memory alloy-based laminated rubber isolation bearing", Eng. Struct., 49(4), 396-407. https://doi.org/10.1016/j.engstruct.2012.11.022.
- Saha, S.K., Sepahvand, K., Matsagar, V.A., Jain, A.K. and Marburg, S. (2013), "Stochastic analysis of base-isolated liquid storage tanks with uncertain isolator parameters under random exscitation", Eng. Struct., 57(4), 465-474. https://doi.org/10.1016/j.engstruct.2013.09.037.
- Seleemah, A.A. and El Sharkawy, M. (2011), "Seismic response of base isolated liquid storage ground tanks", Ain Shams Eng. J., 2(1), 33-42. https://doi.org/10.1016/j.asej.2011.05.001.
- Shekari, M.R., Hekmatzadeh, A.A. and Amiri, S.M. (2019), "On the nonlinear dynamic analysis of base-isolated three-dimensional rectangular thin-walled steel tanks equipped with vertical baffle", Thin Wall. Struct., 138(5), 79-94. https://doi.org/10.1016/j.tws.2019.01.037.
- Shekari, M.R., Khaji, N. and Ahmadi, M.T. (2009), "A coupled BE-FE study for evaluation of seismically isolated cylindrical liquid storage tanks considering fluid-structure interaction", J. Fluid. Struct., 25(3), 567-585. https://doi.org/10.1016/j.jfluidstructs. 2008.07.005.
- Shrimali, M.K. and Jangid, R.S. (2011), "A comparative study of performance of various isolation systems for liquid storage tanks", Int. J. Struct. Stab. Dyn., 2(4), 573-591. https://doi.org/10.1142/S0219455402000725.
- Sun, J., Zheng, J., Cui, L., Li, J. and Xu, L. (2013), "Base isolation response spectrum design of LNG storage tank", J. Harbin Inst. Technol., 45(4), 105-109.
- Vosoughifar, H. and Naderi, M. (2014), "Numerical analysis of the base-isolated rectangular storage tanks under bi-directional seismic excitation", Brit. J. Mathemat. Comput. Sci., 4(21), 3054-3067. https://doi.org/10.9734/BJMCS/2014/11299
- Yang, Z.R., Shou, B.N., Sun, L. and Wang, J.J. (2011), "Earthquake response analysis of spherical tanks with seismic isolation", Procedia Eng., 14(11), 1879-1886. https://doi.org/10.1016/j.proeng.2011.07.236.
- Zheng, W., Wang, H., Li, J. and Shen, H. (2020), "Parametric study of superelastic-sliding LRB system for seismic response control of continuous bridges", J. Brid. Eng., 25(9), 04020062. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001596.
- Zhou, H. (2018), "Research on integration method in time domain and frequency domain of vibration acceleration signal", Mech. Eng., 322(4), 152-154.