• Title/Summary/Keyword: vertical drop

Search Result 217, Processing Time 0.029 seconds

RESISTANCE OF COFFEE BEANS AND COFFEE CHERRIES TO AIR FLOW

  • Nordin Irbrahim, M.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.886-895
    • /
    • 1993
  • Experimental were conducted to obtain information on the effect of airflow rates and bed depths on the resistance of coffee cherries and coffee beans available locally (Coffea Liberica). The airflow used were in the range of 0.06 to 0.6 cu. m/s-sq.m. The moisture content of the coffee cherries ranged from 10 % to 50% (wet basis) and that of coffee beans ranged from 12% to 30% )wet basis). Two methods of filling were used i.e. loose fill and packed fill. Pressure drops across the material bed in a vertical column were measured at several depths using inclined manometer. The pressure drop increased directly with air flow rate as well as bed depths. The effects of air flowrates and moisture contents on the resistance in terms of pressure drip per unit bed depth were analysed. The pressure drop per unit depth across the material bed varied slightly due to different depth. The resistance to airflow decreased with the increase in moisture content for loose fill. However, the effect of moisture content is not apparent for packed fill.

  • PDF

Numerical Study of obstructed channel flow (장애물이 부착된 평판사이유동의 수치해석적 연구)

  • Hwang, In-Sang;Yang, Kyung-Soo
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.783-788
    • /
    • 2000
  • Flow fields in two-dimensional plane channels with thin obstacles("baffles and blocks") mounted symmetrically in the vertical direction and periodically in the streamwise direction are studied numerically to understand how various geometric conditions influence the critical Reynolds number and pressure drop. Changing BR(the ratio of channel to baffle interval) from 1:1 to 1.5, we computed the critical Reynolds number and pressure drop. Especially when BR is 1:3, at which the critical Reynolds number turned out to be minimal, we added blocks in the geometry in order to study their destabiliting effects on the flows.

  • PDF

Experimental Study of Water Impact Loads on Symmetric and Asymmetric Wedges (대칭 및 비대칭 2차원 쐐기의 입수 충격에 관한 실험적 연구)

  • Kim, Kyong-Hwan;Lee, Dong Yeop;Hong, Sa Young;Kim, Young-Shik;Kim, Byoung Wan
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.209-217
    • /
    • 2014
  • In the present study, the water impact loads on two-dimensional symmetric and asymmetric wedges were mainly studied. The impact pressure and force were measured during a vertical drop of the symmetric and asymmetric wedges. The measured pressure was compared with analytic solutions. The measured force at a local area of the wedge was compared with the integrated pressures and analytic solutions. Some findings on symmetric and asymmetrical wedge drops are presented, and the reliability of the force sensor used for the measurement of the local impact force is discussed.

Effects of Screen Packing Materials an Gas Discharge Dust Containing (함진기체의 배출에 미치는 금망 충진물의 영향)

  • 홍영호;함영민
    • Journal of the Korean Society of Safety
    • /
    • v.8 no.4
    • /
    • pp.120-126
    • /
    • 1993
  • This work was carried out to investigate the effects of solid mass flow rate, mean particle diameter and mesh number of screen packing material on minimum carrying velocity, which defined as the superficial gas velocity of the upper limit of chocking phenomenon. Vertical pneumatic conveying was studied on a 4.6cm 1. D. pipe, 180cm in length. Experiments were performed in both the empty and the screen-packed pipe. It was also examined the effect of superficial gas velocity, solid mass flow, mean particle diameter, and mesh number of packing material on pressure drop. Minimum carrying velocity in screen packed-pipe was lower than that in an empty pipe. besides minimum carrying velocity was decreased with increase in mesh number of screen packing material. The pressure drop In vortical packed-pipe was Increased with superficial gas velocity, mean particle diameter, and mesh number of screen packing material.

  • PDF

Aerodynamic Study on Pneumatic Separation of Grains(I) -An Experimental Study on The Vertical Wind Tunnel- (곡물(穀物)의 공기선별(空氣選別)에 관(關)한 공기동력학적(空氣動力學的) 연구(硏究)(I) -수직풍동(垂直風胴)의 설계(設計)에 관(關)한 실험적(實驗的) 연구(硏究)-)

  • Lee, C.H.;Cho, Y.J.;Kim, M.S.
    • Journal of Biosystems Engineering
    • /
    • v.14 no.4
    • /
    • pp.272-281
    • /
    • 1989
  • It is desirable for the vertical wind tunnel which can build uniform air flow across the vertical duct to be used for the purpose of the investigation of the aerodynamic properties of grains. This study was conducted to examine how the air velocity profile in the vertical duct is influenced by the various alternations of the elements of the wind tunnel, and to prepare design guidance of the vertical wind tunnel which can be used for investigating aerodynamic properties of grains. In addition, several tests were conducted to locate the test section which can be applicable for determining the terminal velocity of grain. The following conclusions were obtained from the study: 1. The size and the location of the outlet of the plenum chamber should be determined such that the outlet air flow is less affected by the air flow and the back pressure by the side wall of the chamber. 2. The honeycomb was not helpful for attaining uniform air flow in case that the air flow profile at the bottom of the vertical duct is serverely different from the ideal one. 3. Even though considerable pressure drop was resulted from the screens installed within the vertical duct, the screens were helpful for attaining uniform air flow in the duct. 4. It is desirable for the test section to be located at the position that not only the air flow of the duct is not disturbed by the distorted back pressure in the plenum chamber, but also less boundary layer is developed.

  • PDF

STUDY ON TWO-DIMENSIONAL LAMINAR FLOW PAST A VERTICAL PLATE IN A MICROCHANNEL (마이크로채널 내의 수직 평판을 지나는 2차원 층류유동장에 대한 연구)

  • Yoon, Seok-Hyun;Jeong, Jae-Tack
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.233-238
    • /
    • 2010
  • A two-dimensional laminar flow past a vertical plate in a microchannel is investigated. At far upstream and downstream from the plate in the microchannel, the plane Poiseuille flow exists. The Stokes flow for this microchannel is investigated analytically and then the laminar flow by numerical method. For the Stokes flow analysis, the method of eigenfunction expansion is used. From the results, the streamline pattern and the pressure distribution are plotted, and the additional pressure drop induced by the plate and the force exerted on the plate are calculated as functions of the length of the plate. For the laminar flow, finite difference method (FDM) is used to obtain the vorticity and the stream function. When the Reynolds number exceeds a critical value, a pair of viscous eddies appears behind the plate.

  • PDF

Hydraulic Performance Characteristics of Vertical-Axis Propeller Turbine Model (일체형 입축 프로펠러수차 모형의 수력학적 성능특성)

  • Park, Wan-Soon;Lee, Chul-Hyung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.379-382
    • /
    • 2008
  • The propeller type hydro turbine model with vertical axis has been tested and analized. The blade angle of runner of turbine model were designed to be varied according to the condition of head and flowrate. When the changes in head and output were comparatively large, the efficiency drop were small, so the efficiency characteristics and stability of the entire operating condition were maintained in good condition. These results showed that the developed model in this study will be suitable for small hydro power stations with large changes in head and load such as sewage treatment plants and agricultural reservoirs.

  • PDF

An Experimental Study on the Drag Reduction with polymer Additives in Pipe Flow System (관 유동에서 폴리머 첨가에 의한 저항감소 현상의 실험적 고찰)

  • Cha, K.O.;Kim, J.G.
    • Solar Energy
    • /
    • v.19 no.3
    • /
    • pp.1-11
    • /
    • 1999
  • Previous researchers have studied how to reduce a pumping power in order to save energy in the fluid transporting system. Especially, it has been studied a lot about reducing the pressure drop among parameters related to the energy saving for fluid transport. This study is to investigate the effect of a substantial drag reduction caused by the polymer(A611P, A601P) when the working fluids flow to the vertical and horizontal direction in the vertical cylindrical equipment of closed flow system. In this experiment, we mount a visualization equipment on the test section and take pictures. With using the PIV system, instrument and analyzing the movement of bubble for different polymer concentration are observed and some mechanism of the drag reduction effect is clarified.

  • PDF

A Novel EST with Trench Electrode to Immunize Snab-back Effect and to Obtain High Blocking Voltage

  • Kang, Ey-Goo;Sung, Man-Young
    • Transactions on Electrical and Electronic Materials
    • /
    • v.2 no.3
    • /
    • pp.33-37
    • /
    • 2001
  • A vertical trench electrode type EST has been proposed in this paper. The proposed device considerably improves snapback which leads to a lot of problems of device applications. In this paper, the vertical dual gate Emitter Switched Thyristor (EST) with trench electrode has been proposed for improving snab-back effect. It is observed that the forward blocking voltage of the proposed device is 745V. The conventional EST of the same size were no more than 633V. Because the proposed device was constructed of trench-type electrodes, the electric field moved toward trench-oxide layer, and the punch through breakdown of the proposed EST is occurred at latest.

  • PDF

A Study on Prediction Model of Flow and Heat Transfer in the Circulating Fluidized Bed Heat Exchanger with Multiple Vertical Tubes (다관형 순환유동층 열교환기의 유동 및 전열성능 예측모텔 연구)

  • Park, Sang-Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.3
    • /
    • pp.263-268
    • /
    • 2007
  • The pressure drop and heat transfer coefficient were measured at room temperature in a CFB heat exchanger with multiple vertical tubes. The circulation rate of solid particles was also measured. The theoretical model for predicting heat transfer coefficient using the solid flowrate was developed in this study. The model predictions were compared with the measured heat transfer coefficient to show relatively good agreement.