• Title/Summary/Keyword: vertical drains

Search Result 135, Processing Time 0.03 seconds

Vacuum distribution with depth in vertical drains and soil during preloading

  • Khan, Abdul Qudoos;Mesri, G.
    • Geomechanics and Engineering
    • /
    • v.6 no.4
    • /
    • pp.377-389
    • /
    • 2014
  • The vacuum consolidation method which was proposed by Kjellman in 1952 has been studied extensively and used successfully since early 1980 throughout the world, especially in East and Southeast Asia. Despite the increased successful use, different opinions still exist, especially in connection to distribution of vacuum with depth and time in vertical drains and in soil during preloading of soft ground. Porewater pressure measurements from actual cases of field vacuum and vacuum-fill preloading as well as laboratory studies have been examined. It is concluded that (a) a vacuum magnitude equal to that in the drainage blanket remains constant with depth and time within the vertical drains, (b) as expected, vacuum does not develop at the same rate within the soil at different depths; however, under ideal conditions vacuum is expected to become constant with depth in soil after the end of primary consolidation, and (c) there exists a possibility of internal leakage in vacuum intensity at some sublayers of a soft clay and silt deposit. A case history of vacuum loading with sufficient subsurface information is analyzed using the ILLICON procedure.

Utilization of Recycled Aggregates and Crushed Stone as Vertical drains (연직배수재로서 순환골재와 쇄석의 활용방안)

  • Lee, Dal-Won;Lee, Jung-Jun;Kim, Si-Jung;Lee, Young-Hak
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.969-978
    • /
    • 2010
  • In this study, a laboratory model test on utilization of recycled aggregates and crushed stone as vertical drains to use alternative material of sand in soft ground is performed. The vertical and horizontal coefficient of permeability of the recycled aggregates and crushed stone showed largely 1.2~4.0 times and 3.0~3.3 times greater than sand, respectively. Therefore, it showed enough to be an alternative material to the sand which had been being used as the vertical and horizontal drainage material before. The variations of pore water pressure with time showed constantly regardless of the load in all vertical drainage materials. When water level drops suddenly, the pore water pressure of the recycled aggregate and crushed aggregate is reduced to nearly zero. Therefore, it was applicable to the field because discharge capacity was similarity to that of sand. The settlement in crushed aggregates and recycled aggregate decreases gradually with the load increase. When water level drops suddenly, earth pressure in all drains materials was evaluated the equivalent drainage capacity similarity to sand because it show approaching the nearly zero.

  • PDF

Minimum Expected Cost based Design of Vertical Drain Systems (최소기대비용에 의한 연직배수시설의 설계)

  • Kim, Seong-Pil;Son, Young-Hwan;Chang, Pyung-Wook
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.6
    • /
    • pp.93-101
    • /
    • 2007
  • In general, geotechnical properties have many uncertain aspects, thus probabilistic analysis have been used to consider these aspects. It is, however, quite difficult to select an appropriate target probability for a certain structure or construction process. In this study, minimum expected cost design method based on probabilistic analysis is suggested for design of vertical drains generally used to accelerate consolidation in soft clayey soils. A sensitivity analysis is performed to select the most important uncertain parameters for the design of vertical drains. Monte Carlo simulation is used in sensitivity analysis and probabilistic analysis. Total expected cost, defined as the sum of initial cost and expected additive cost, varies widely with variation of input parameters used in design of vertical drain systems. And probability of failure to get the minimum total expected cost varies under the different design conditions. A minimum value of total expected cost is suggested as a design value in this study. The proposed design concept is applicable to unit construction process because this approach is to consider the uncertainties using probabilistic analysis and uncertainties of geotechnical properties.

Prediction of Residual Settlement of Ground Improved by Vertical Drains Using the Elasto-Viscous Consolidation Model - Application for Field Condition - (탄-점성 압밀이론에 의한 버티칼 드레인 타설지반의 잔류침하 예측 (II) - 현장조건에의 적용 -)

  • Baek, Won-Jin;Lee, Kang-Il;Kim, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.6
    • /
    • pp.85-95
    • /
    • 2007
  • In this study, in order to propose the prediction method of the residual settlement of clayey ground improved by vertical drains, a series of numerical analyses for a model ground were carried out using the elasto-viscous consolidation model. And the effects of ground improvement conditions of the ratio of effective radii $(r_e/r_w)$, consolidation pressure $({\Delta}p)$ on normally consolidated state, and the OCR (overconsolidation ratio) on overconsolidated state to reduce the residual settlement in three-dimensional consolidation by vertical drains were investigated by performing a series of numerical analyses. Furthermore, based on the results of a series of numerical analyses for the model ground, the predicting method of the residual settlement of clayey ground with vertical drains and the determination method of the value of OCR required to control the residual settlement within an acceptable value are proposed.

Analysis of Ground Disturbance Characteristics by Field Smear Zones Test (현장스미어존 시험에 의한 지반교란특성 분석)

  • 진규남;이재식;박영목;정하익;진현식
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.583-590
    • /
    • 2000
  • The installation of vertical drains by using a mandrel causes significant disturbance of the subsoil. Thus a smear zone may be developed with reduced permeability and increased compressibility. In this paper the extent of smear zone developing ground disturbance with the installation of mandrels are analysed by field smear zone test. The extent and the consolidation characteristics of smear zones around the mandrels is compared with the shape, the size of mandrel and penetration speed and is evaluated from the field smear test results. (circular, sqare, rectangle and oval type)

  • PDF

2-D Axisymmetric Non-linear Finite Strain Consolidation Model Considering Self-weight Consolidation of Dredged Soil (준설매립지반의 자중압밀을 고려한 2차원 축대칭 비선형 유한변형 압밀 모델)

  • Kwak, Tae-Hoon;Lee, Dong-Seop;Lim, Jee-Hee;Stark, T.D.;Choi, Eun-Seok;Choi, Hang-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.8
    • /
    • pp.5-19
    • /
    • 2012
  • Vertical drains along with the preloading technique have been commonly used to enhance the consolidation rate of dredged placement formation. In practice, vertical drains are usually installed in the process of self-weight consolidation of a dredged soil deposit because this process takes considerable time to be completed, which makes conventional analytical or numerical models difficult to quantify the consolidation behavior. In this paper, we propose a governing partial differential equation and develop a numerical model for 2-D axisymmetric non-linear finite strain consolidation considering self-weight consolidation to predict the behavior of a vertical drain in the dredged placement foundation which is installed during the self-weight consolidation. In order to verify the developed model in this paper, results of the numerical analysis are compared with that of the lab-scaled self-weight consolidation test. In addition, the model verification has been carried out by comparing with the simplified method. The comparisons show that the developed model can properly simulate the consolidation of the dredged placement formation with the vertical drains installed during the self-weight consolidation. Finally, the effect of construction schedule of vertical drains and of pre-loading during the self-weight consolidation is examined by simulating an imaginary dredged material placement site with a thickness of 10 m and 20 m, respectively. This simulation infers the applicability of the proposed method in this research for designing a soil improvement in a soft dredged deposit when vertical drains and pre-loading are implemented before the self-weight consolidation ceases.

Laboratory Test and Field Study of Soft Ground Improvement Effect by Using Various PVDs (실내실험과 현장실험을 통한 다양한 PVD의 연약지반개량효과)

  • Shin, Eun-Chul;Nazarova, Zhanara
    • Journal of the Korean Geosynthetics Society
    • /
    • v.7 no.2
    • /
    • pp.15-21
    • /
    • 2008
  • The advantages of prefabricated vertical drains over conventional sand drains include their relatively low costs, less disturbance to the soil mass, the easinees of installation, and their flexibility which ensures the integrity of the drains during installation. This study tested the change of discharge capacities with respect to the hydraulic gradients for each lateral pressure. From the test results, as increases the overburden pressure, the clay soil is being consolidated, and also lateral pressure to the PVD specimen is increased. Therefore, the discharge capacity is decreased. The size of opening space in the core of PVDs is proportionally related to the discharge capacity. The numerical analysis was performed with utilizing computer simulation with considering field conditions. The results of numerical analysis are compared well with the field measurements.

  • PDF

A Study on the Effect of Consolidation according to the depth of Vertical Drains (Drain 타설심도에 따른 압밀효과에 관한 연구)

  • Son, Dae-San;Jang, Jeong-Wook;Park, Sik-Choon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1187-1194
    • /
    • 2006
  • This study analyzed characteristics of soft ground consolidation according to depths of vertical drain. As the result, when the depth ratio of vertical drains (L/D) were 0.5, 0.7, and 1.0, consolidation characteristics were similar up to 70% in consolidation degree under one-dimensional drain condition. However, above this degree, consolidation speed became slower as L/D became smaller. Two-dimensional drain condition also showed a similar tendency, but when L/D was 1.0, the consolidation speed was relatively higher.

  • PDF

The Characteristics of Soil Remediation by Soil Flushing System Using PVDs (연직배수재를 이용한 토양세정시스템의 오염토양정화 특성)

  • Park, Jeong-Jun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.10 no.5
    • /
    • pp.76-86
    • /
    • 2007
  • For the purpose of ground improvement by means of soil flushing systems. Incorporated technique with prefabricated vertical drains have been used for dewatering from fine-grained soils. The laboratory model tests were performed by using the flushing tracer solutions for silty soils and recorded the tracer concentration changes with the elapsed time and flow rates. A mathematical model for prediction of contaminant transport using the PVD technology has been developed. The clean-up times for the predictions on both soil condition indicate more of a sensitivity to the dispersivity parameter than to the extracted flow rate and vertical velocity parameters. Based on the results of the analyses, numerical analysis indicate that the most important factor to the in-situ soil remediation in prefabricated vertical drain system is the effective diameter of contaminated soil.