• Title/Summary/Keyword: vertical deflection

Search Result 287, Processing Time 0.03 seconds

Determination of the Deflection of Vertical Components via GPS and Leveling Measurement : A Case Study of Chunchoen, Gangwon-do (GPS/Leveling을 이용한 연직선 편차 성분 계산 : 강원도 춘천지역을 중심으로)

  • Shin, Moon-Seung;Lee, Dong-Ha;Yang, In-Tae
    • Journal of Industrial Technology
    • /
    • v.36
    • /
    • pp.65-69
    • /
    • 2016
  • Deflection of the vertical is used in geodetic surveying associated with geoid network construction for geoid modeling and ellipsoid decision and obtained by gravity survey, astronomic survey etc. Technique of astronomic survey and gravity survey is very complex and requires a significant amount of time until gathering data. So this study is to determined a various method which evaluates deflection of the vertical and components about deflection of the vertical using GPS results and orthometric height value decided by leveling. Results of components about deflection of the vertical using GPS/leveling is that ${\xi}$ conponent is distributed $-2.11^{{\prime}{\prime}}{\pm}0.62$, ${\eta}$ component is distributed $1.75^{{\prime}{\prime}}{\pm}0.71$. Decision of component about deflection of the vertical using GPS is less complex than existing astronomic survey. Decision of component about deflection of vertical line using GPS is not complicated than astronomic surveying and can determine in a very short time. So it will be important means to determine the exact orthometric height, topographic study and diastrophism if can periodically calculate.

  • PDF

Effects of Partially Distributed Loads on Dynamic Response of Plane Parabolic Arch (부분분포하중이 평면 포물선아치의 동적응답에 마치는 영향)

  • Cho, Jin-Goo;Park, Keun-Soo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.6
    • /
    • pp.21-28
    • /
    • 2004
  • This study aims to investigate the effects of partially distributed loads on the dynamic behaviour of steel parabolic arches by using the elasto-plastic finite element model based on the Von Mises yield criteria and the Prandtl-Reuss How rule. For this purpose, the vertical and the radial load conditions were considered as a distributed loading and the loading range is varied from 40% to 100% of arch span. Normal arch and arch with initial deflection were studied. The initial deflection of arch was assumed by the sinusoidal motile of ${\omega}_i\;=\;{\\omega}_O$ sin ($n{\pi}x/L$). Several numerical examples were tested considering symmetric initial deflection when the maximum initial deflection at the apex is fixed as L/1000. The analysis resluts showed that the maximum deflection at the apex of arch was occurred when 70% of arch span was loaded. The maximum deflection at the quarter point of arch span was occurred when 50% of arch span was loaded. It is known that the optimal rise to span ratio between 0.2 and 0.3 when the vertical or radial distributed load is applied. It is verified that the influence of initial deflection of radial load case is more serious than that of vertical load case.

Prediction of Ring Deflection GRP Pipe Buried Underground (지중매설 GRP 관의 관변형 예측)

  • Kim, Sun-Hee;Lee, Young-Geun;Joo, Hyung-Jung;Jung, Nam-Jin;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.4 no.3
    • /
    • pp.38-44
    • /
    • 2013
  • Glass fiber reinforced plastic (GRP) pipes buried underground are attractive for use in harsh environments, such as for the collection and transmission of liquids which are abrasive and/or corrosive. In this paper, we present the result of investigation pertaining to the structural behavior of GRP flexible pipes buried underground. In the investigation of structural behavior such as a ring deflection, experimental and analytical studies are conducted. In addition, vertical ring deflection is measured by the field test and finite element analysis (FEA) is also conducted to simulate behavior of GRP pipe buried underground. Based on the results from the finite element analyses considering soil-pipe interaction the vertical ring deflection behavior of buried GRP pipe is predicted. In addition, analytical and experimental results are compared and discussed.

Small Scaled Laboratory Test of Eco-Friendly Backfill Materials with Bottom Ash (바톰애쉬를 이용한 환경친화적 뒤채움재의 실내모형실험)

  • Lee, Kwan-Ho;Lee, Kyung-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.4
    • /
    • pp.1889-1894
    • /
    • 2012
  • A small-scale chamber test laboratory for controlled low strength materials with bottom ash and recycled in-situ soil have been carried out. Laboratory test which was simulated during construction stage was conducted. The vertical deflection of 4.43mm to 6.6mm, and the horizontal deflection of 5.49mm to 15.9 mm were measured during backfilling. In case of loading, the vertical deflection of 2.41mm to 8.69mm, and the horizontal deflection of 1.66mm to 2.53mm were measured. Its residual deflections were 1.40mm to 5.93mm for vertical and 1.66mm to 2.53mm for lateral. The vertical and horizontal deflecto of controlled low strength materials were smaller than that of sand backfill. Also, it was same trend for the measured surface settlement.

An Investigation of Structural Behavior of Underground Buried GFRP Pipe in Cooling Water Intake for the Nuclear Power Plant (원전 냉각수 취수용 지중매설 GFRP관의 구조적 거동 조사)

  • Lee, Hyoung-Kyu;Park, Joon-Seok
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.2
    • /
    • pp.91-96
    • /
    • 2015
  • GRP pipe (Glass-fiber Reinforced Plastic Pipe) lines making use of FRP (Fiber Reinforced Plastic) are generally thinner, lighter, and stronger than the existing concrete or steel pipe lines, and it is excellent in stiffness/strength per unit weight. In this study, we present the result of field test for buried GRP pipes with large diameter(2,400mm). The vertical and horizontal ring deflections are measured for 387 days. The short-term deflection measured by the field test is compared with the result predicted by the Iowa formula. In addition, the long-term ring deflection is predicted by using the procedure suggested in ASTM D 5365(ANNEX) in the range of 40 to 60 years of service life of the pipe based on the experimental results. From the study, it was found that the long-term vertical and horizontal ring deflection up to 60 years is less than the 5% ring deflection limitation.

Structural performance evaluation of bolted end-plate connections in a half-through railway inclined girder

  • Jung Hyun Kim;Chang Su Shim
    • Steel and Composite Structures
    • /
    • v.49 no.5
    • /
    • pp.473-486
    • /
    • 2023
  • A through-railway bridge with an inclined girder has recently been applied to optimize the cross-section of a slender bridge structure in railway bridges. To achieve the additional cross-section optimization effect by the bolted end-plate connection, it is necessary to investigate the application of the bolted end-plate tension connection between the inclined girder and the crossbeam. This basic study was conducted on the application of the bolted end-plate moment connection of crossbeams to half-through girders with inclined webs. The combined behavior of vertical deflection and rotational behavior was observed due to the effect of the web inclination in the inclined girder where the steel crossbeam was connected to the girder by the bolted end-plate moment connection. Therefore, in the experiment, the deflection of the inclined girder was 1.77-2.93 times greater than that of the vertical girder but the lateral deflection of the inclined girder was 0.4 times less than that of the vertical girder. Moreover, the tensile stress of the upper bolts in the inclined girder with low crossbeams was clearly 0.81 times lower than that of the vertical girder. According to the results, the design formula for vertical girders does not reflect the influence of the web inclination. Therefore, this study proposed the design procedures for the inclined girder to apply the bolted end-plate moment connection of the crossbeam to the inclined girder by reflecting the design change factors according to the effect of the web inclination.

A study on a uniformity of flow field in a duct cooler of FGD system (배연탈황설비 덕트쿨러에서의 유동균일화에 관한 연구)

  • 배진효;김광추;박만흥;박경석;이종원
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.2
    • /
    • pp.120-130
    • /
    • 2000
  • A flow uniformity in a duct cooler of duct system of FGD(Flue Gas Desulfurization) linking a reheater and a absorber has been investigated in the present study. For this purpose, the flow characteristics according to the geometry of a vertical and horizontal vane in a curved duct of the duct system has been examined with the aid of a numerical simulation. The results indicate that the vertical vane with a little deflection toward a recirculation region makes the flow distribution in the duct cooler more uniform than that without deflection, and horizontal vane does not effect the change of the flow distribution for an angle of inclination. The mean flow uniform factor shows its maximum for duct system without the vane(case NP) and its minimum for the vertical vane with a little deflection(case P-0.8-0) .

  • PDF

Determination of Local Vortical in Celestial Navigation Systems (천측 항법 시스템의 수직 방향 결정)

  • Suk, Byong-Suk;Lyou, Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.1
    • /
    • pp.72-78
    • /
    • 2007
  • Determination of the local vertical is not trivial for a moving vehicle and in general will require corrections for the Earth geophysical deflection. The vehicle's local vertical can be estimated by INS integration with initial alignment in SDINS(Strap Down INS) system. In general, the INS has drift error and it cause the performance degradation. In order to compensate the drift error, GPS/INS augmented system is widely used. And in the event that GPS is denied or unavailable, celestial navigation using star tracker can be a backup navigation system especially for the military purpose. In this celestial navigation system, the vehicle's position determination can be achieved using more than two star trackers, and the accuracy of position highly depends on accuracy of local vertical direction. Modern tilt sensors or accelerometers are sensitive to the direction of gravity to arc second(or better) precision. The local gravity provides the direction orthogonal to the geoid and, appropriately corrected, toward the center of the Earth. In this paper the relationship between direction of center of the Earth and actual gravity direction caused by geophysical deflection was analyzed by using precision orbit simulation program embedded the JGM-3 geoid model. And the result was verified and evaluated with mathematical gravity vector model derived from gravitational potential of the Earth. And also for application purpose, the performance variation of pure INS navigation system was analyzed by applying precise gravity model.

Experimental Analysis of A Preflex Railway Bridge Under Random Train Loads (Preflex 철도교량의 운행열차하중에 대한 동적응답 분석)

  • Oh, Ji-Taek;Kim, Hyun-Min;Choi, Eun-Soo;Kim, Joo-Woo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.5 no.1 s.15
    • /
    • pp.65-71
    • /
    • 2005
  • This research analyzed dynamic responses of the preflex railroad bridge. Vertical deflection and acceleration induced by operating train loads and test train loads were measured. Deflection of bridge by train traveling satisfies deflection limitation regulation (L/800) about the concrete bridge, but compare with UIC standard, vibration acceleration happened fairly greatly. Also test result show that acceleration receives greatly effect about the speed than deflection. It must discuss about vibration acceleration problems for speed elevation hereafter.

  • PDF

A Dynamic Response Analysis about Real Train Loads of the Preflex Railway Bridge (Preflex 철도교량의 실 운행열차하중에 대한 동적응답 분석)

  • Oh Ji-Tack;Kim Hyun-Min;Choi Eun-Soo;Lee Tac-Gyun
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1021-1027
    • /
    • 2004
  • This research analyzed dynamic responses of the preflex railroad bridge. Vertical deflection and acceleration induced by operating train loads and test train loads were measured. Deflection of bridge by train traveling satisfies deflection limitation regulation (L/800) about the concrete bridge, but compare with UIC standard, vibration acceleration happened fairly greatly. Also test result show that acceleration receives greatly effect about the speed than deflection. It must discuss about vibration acceleration problems for speed elevation hereafter.

  • PDF