• Title/Summary/Keyword: vertical current structure

Search Result 222, Processing Time 0.02 seconds

Physical Environment Changes in the Keum River Estuary by the Dyke Gate Operation: II. Salinity Structure and Estuary Type (하구언 수문작동으로 인한 금강 하구역의 물리적 환경변화: II. 염분구조와 하구유형)

  • Lee, Sang-Ho;Kwon, Hyo-Keun;Choi, Hyun-Yong;Yang, Jae-Sam;Choi, Jin-Yong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.4
    • /
    • pp.255-265
    • /
    • 1999
  • CTD castings and current observations are taken in June, July and October, 1997 and May and July, 1998 to investigate the effect of the Keum River dyke on the structure of physical properties and the type of the Keum River estuary. Tide and tidal current relation shows that the ebbing is longer than the flooding by 1.5 hours with the early current reversing before high tide. In the rainy season (May to July), frequent large fresh water discharge during the ebbing from the dyke changes vertical salinity difference and time variation of salinity greatly near the head of the estuary, where salinity becomes lower than 2‰ in summer fresh water flooding. Halocline developed by the fresh water discharge makes two-layer structure, of which strength and depth increase in the low tide. The relationship between tide phase and surface salinity variation shows the phase lag of 2.5 hours near the head of the estuary but the standing wave relation down the estuary. This phase lag implies that a low salinity water diluted by the fresh water discharge for 2-3 hours in the ebb period moves with tidal excursion. In the dry season, vertical salinity difference reduces significantly. We calculate stratification and circulation parameters using the observed salinity structure, surface current and fresh water discharge. The Keum River estuary shows a partially mixed type, changing the stratification parameter from the rainy to the dry season. Mean flows of observed tidal current at lower and upper layer are landward and seaward, which are consistent with the circulation of a partially mixed estuary. Based upon the estuary type and circulation we suggest that the suspended materials will move toward the upstream due to low-layer mean flow and then the Keum River estuary will be a deposit environment.

  • PDF

Effect of Electroplating Parameters on Conductivity and Hardness of Ni-P Alloy (Ni-P 합금의 전기전도도와 경도에 대한 도금 조건의 영향)

  • Kim, Nam-Gil;Sun, Yong-Bin
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.3
    • /
    • pp.77-81
    • /
    • 2017
  • Pulse electroplating of Ni-P alloy was studied to fulfill the material requirement to the advanced vertical probe tip in wafer probe card. The major concerns are for the electrical conductivity and yield strength. Plating parameters such as current density, duty cycle and solution components were examined to obtain the nanocrystal structure and proper percentage of phosphorus, leading to how to control the nanocrystal grain growth and precipitation of $Ni_3P$ after heat treatment. Among the parameters, the amount of phosphorus acid was the main factor affecting on the grain size and sheet resistance, and the amount of 0.1 gram was appropriate. Since hardness in Ni-P alloy is increased by as-plated nanocrystal structure plus precipitation of $Ni_3P$, the concentration of P less than 15 at% was better choice for the grain coarsening without minus in hardness value. The following heat treatment made grain growth and dispersion of precipitates adjustable to meet the target limit of resistance of $100m{\Omega}$ and hardness number of over 1000Hv. The Ni-P alloy will be a candidate for the substitute of the conventional probe tip material.

Cu-SiO2 Hybrid Bonding (Cu-SiO2 하이브리드 본딩)

  • Seo, Hankyeol;Park, Haesung;Kim, Sarah Eunkyung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.1
    • /
    • pp.17-24
    • /
    • 2020
  • As an interconnect scaling faces a technical bottleneck, the device stacking technologies have been developed for miniaturization, low cost and high performance. To manufacture a stacked device structure, a vertical interconnect becomes a key process to enable signal and power integrities. Most bonding materials used in stacked structures are currently solder or Cu pillar with Sn cap, but copper is emerging as the most important bonding material due to fine-pitch patternability and high electrical performance. Copper bonding has advantages such as CMOS compatible process, high electrical and thermal conductivities, and excellent mechanical integrity, but it has major disadvantages of high bonding temperature, quick oxidation, and planarization requirement. There are many copper bonding processes such as dielectric bonding, copper direct bonding, copper-oxide hybrid bonding, copper-polymer hybrid bonding, etc.. As copper bonding evolves, copper-oxide hybrid bonding is considered as the most promising bonding process for vertically stacked device structure. This paper reviews current research trends of copper bonding focusing on the key process of Cu-SiO2 hybrid bonding.

Electromagnetic Microactuators with the Electroplated Planar Coil Driven by Radial Magnetic Field (방사형 자기장 내의 전기도금된 평면코일을 이용한 전자기형 마이크로 액추에이터)

  • Ryu, Ji-Cheol;Gang, Tae-Gu;Jo, Yeong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.1
    • /
    • pp.16-24
    • /
    • 2001
  • This paper presents an electromagnetic microactuator using the copper coil electroplated on the p+silicon diaphragm. The microactuator generates a vertical motion of the diaphragm using the radial direction, we propose a new actuator structure with twin magnets. The microactuator field in the radial direction, we propose a new actuator structure with twin magnets. The microactator shows a values of resonant frequency and quality factor in the ranges of 10.51${\pm}$0.22kHz and 46.6${\pm}$3.3, respectively. The twin magnet microactuator generates the maximum peak-to-peak amplitude of 4.4$\mu\textrm{m}$ for the AC rms current of 26.8mA, showing 2.4 times larger amplitude than the single magnet microactuator.

Self-Aligned $n^+$ -pPolysilicon-Silicon Junction Structure Using the Recess Oxidation (Recess 산화를 이용한 자기정렬 $n^+$ -p 폴리실리콘-실리콘 접합구조)

  • 이종호;박영준;이종덕;허창수
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.6
    • /
    • pp.38-48
    • /
    • 1993
  • A recessed n-p Juction diode with the self-aligned sturcture is proposed and fabricated by using the polysilicon as an n$^{+}$ diffusion source. The diode structure can be applicable to the emitter-base formation of high performance bipolar divice and the n$^{+}$ polysilicone mitter has an important effect on the device characteristics. The considered parameters for the polysilicon formation are the deposition condition. As$^{+}$ dose for the doping of the polysilicon and the annealing condition using RTP system. The vertical depth profiles of the fabricated diode are obtained by SIMS and the electrical characteristics are analyzed in terms of the ideality factor of diode (n), contact resistance and reverse leakage current. In addition, n$^{+}$-p junction diodes are formed by using the amorphous silicon (of combination of amorphous and polysiliocn) instead of polysilicon and their characteristics are compared with those of the standard sample. The As$^{+}$ dose for the formation of good junction is about 1~2${\times}10^{16}cm^{2}$ at given RTA conditions (1100.deg. C, 10sec).

  • PDF

Performance of under foundation shock mat in reduction of railway-induced vibrations

  • Sadeghi, Javad;Haghighi, Ehsan;Esmaeili, Morteza
    • Structural Engineering and Mechanics
    • /
    • v.78 no.4
    • /
    • pp.425-437
    • /
    • 2021
  • Under foundation shock mats have been used in the current practice in order to reduce/damp vibrations received by buildings through the surrounding environment. Although some investigations have been made on under foundation shock mats performance, their effectiveness in the reduction of railway induced-vibrations has not been fully studied, particularly with the consideration of underneath soil media. In this regard, this research is aimed at investigating performance of shock mat used beneath building foundation for reduction of railway induced-vibrations, taking into account soil-structure interaction. For this purpose, a 2D finite/infinite element model of a building and its surrounding soil media was developed. It includes an elastic soil media, a railway embankment, a shock mat, and the building. The model results were validated using an analytical solution reported in the literature. The performance of shock mats was examined by an extensive parametric analysis on the soil type, bedding modulus of shock mat and dominant excitation frequency. The results obtained indicated that although the shock mat can substantially reduce the building vibrations, its performance is significantly influenced by its underneath soil media. The softer the soil, the lower the shock mat efficiency. Also, as the train excitation frequency increases, a better performance of shock-mats is observed. A simplified model/method was developed for prediction of shock mat effectiveness in reduction of railway-induced vibrations, making use of the results obtained.

Thermal Structure of the East China Sea Upper Layer Observed by a Satellite Tracked Drifter Experiment (위성추적부이를 이용한 동중국해 상층 수온구조 관측)

  • Lee, Seok;Lie, Heung-Jae;Cho, Cheol-Ho;Song, Kyu-Min;Lee, Jae-Hak
    • Ocean and Polar Research
    • /
    • v.30 no.3
    • /
    • pp.361-372
    • /
    • 2008
  • A satellite tracked drifter experiment was conducted to observe thermal structure and surface circulation in the northeastern East China Sea. For this experiment, four ADOS buoys, assembled with surface float and thermister chain, were deployed on August 2007 in southern Jeju-do, where the Kuroshio Branch Current is separated from the main stream. Thermal structure in the upper layer of the northeastern East China Sea was successfully observed during the following $1{\sim}3$ months. Strong thermo-haline front in a northeast-southwest direction was observed. In the frontal zone, warm and saline Kuroshio origin water intermixes with fresher coastal water and flows toward the Korean Strait. Typhoon Nari, which passed over the East China Sea 20 days after commencement of study, caused distinct signals in the thermal structure and trajectory of buoys. During the typhoon, surface temperature abruptly dropped to about $4^{\circ}C$, while the thermocline formed at $30{\sim}50$ m depth vanished due to strong vertical mixing. Internal inertial oscillation occurred several days after the typhoon. The fortuitous occurrence of typhoon Nari showed that ADOS buoys can provide useful and accurate air-sea interaction data during typhoons.

Mechanical performance analysis of an electromagnetic friction pendulum system based on Maxwell's principle

  • Mao Weikang;Li Xiaodong;Chen Enliang
    • Earthquakes and Structures
    • /
    • v.27 no.2
    • /
    • pp.143-154
    • /
    • 2024
  • Friction pendulums typically suffer from poor uplift-restraining. To improve the uplift-restraining and enhance the energy dissipation capacity, this article proposed a composite isolation device based on electromagnetic forces. The device was constructed based on a remote control system to achieve semi-active control of the composite isolation device. This article introduces the theory and design of an electromagnetic chuck-friction pendulum system (ECFPS) and derives the theoretical equation for the ECFPS based on Maxwell's electromagnetic attraction equation to construct the proposed model. By conducting 1:3 scale tests on the electromagnetic device, the gaps between the practical, theoretical, and simulation results were analyzed, and the accuracy and effectiveness of the theoretical equation for the ECFPS were investigated. The hysteresis and uplift-restraining performance of ECFPS were analyzed by adjusting the displacement amplitude, vertical load, and input current of the simulation model. The data obtained from the scale test were consistent with the theoretical and simulated data. Notably, the hysteresis area of the ECFPS was 35.11% larger than that of a conventional friction pendulum. Lastly, a six-story planar frame structure was established through SAP2000 for a time history analysis. The isolation performances of ECFPS and FPS were compared. The results revealed that, under horizontal seismic action, the horizontal seismic response of the bottom layer of the ECFPS isolation structure is greater than that of the FPS, the horizontal vibration response of the top layer of the ECFPS isolation structure is smaller than that of the FPS, and the axial force at the bottom of the columns of the ECFPS isolation structure is smaller than that of the FPS isolation structure. Therefore, the reliable uplift-restraining performance is facilitated by the electromagnetic force generated by the device.

A Model Study for Electrical Resistivity Method Using Three-Point Electrode Array (Three-Point 전극(電極) 배열법(配列法)을 이용(利用)한 전기(電氣) 비저항탐사(比抵抗探査) 모형연구(模型硏究))

  • Min, Kyung Duck;Kim, Chong Mi
    • Economic and Environmental Geology
    • /
    • v.14 no.3
    • /
    • pp.111-122
    • /
    • 1981
  • This study is a model analysis for an effective application of the geophysical prospecting to the investigation of geological structures or useful resources, and the purpose of it is to research a property of the electrical resistivity prospecting, especially by using a Three-Point electrode array method. In using the Three-Point electrode array method, it is theoretically assumed to choose the infinite for a distance between the two current electrodes, however it is impossible in applying to the practical field prospecting. Therefore this study was conducted for determination and presentation of a minimum appropriate distance between the two current electrodes by making a study on prospecting effect in the variation of distance between both the electrodes. In case that the ratios of the distance between the two current electrodes to that between the two potential electrodes are respectively chosen for 40, 400, 5,000, the experimental data of this study showed that the minimum appropriate distance between the two current electrodes is forty times as much as that between two potential electrodes. In order to make clear a problem about prospecting depth which is essential to the data processing, it had been chosen equally to the distance between two potential electrodes. As a result of it, it was shown that the anomaly is appeared along the position of an assumed ore body. Consequently it was found out that the prospecting depth of the Three-Point electrode array method is the same as the distance between the two potential electrodes. From the model experiment on the sheeting ore body(or linear structure) of horizontal, dipping of $30^{\circ}$, $60^{\circ}$ and vertical on the basis of above experimental condition, it was found out that the position and dip of assumed ore body could be inferred from the aspects of the equiresistivity curve. In consequence of performing out the simultaneous Normal and Reversal electrode movement, it was shown that the electrode movement of the Reversal forms the anomaly more clearly than that of Normal when the sheeting ore body is situated obliquely, therefore it could be ascertained that the electrode movement have to be performed simultaneously in the manner of Normal and Reversal. It was also exhibited that the aspect of the equiresistivity curve forms symmetrically when an assumed ore body (or linear structure) is situated horizontally or vertically, that is, symmetrically, and moreover that the aspect of the equiresistivity curve forms unsymmetrically when an assumed ore body (or linear structure) is situated obliquely. On the basis of these experimental analysis it is thought that it can be inferred from the aspect of equiresistivity curve whether an assumed ore body is obliquely situated or not.

  • PDF

A Study on the Visibility Ratio Analysis Technique for Establishing the Cultural Property Protective Zone (문화재 보호구역 설정을 위한 가시율 분석 기법에 관한 연구)

  • Park, Eun-Hee;Kim, Tae-Han;Lee, Jae-Keun
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.29 no.2
    • /
    • pp.108-117
    • /
    • 2011
  • In drafting the standards on changes in current conditions, the height or the number of stories is applied in a restrictive manner by limiting to securing the distance to vertical surface for cultural properties within the influence investigation area, but this is expected to have a negative impact on the surrounding sceneries as well as results in the dwarfing phenomenon for precious cultural properties. That is, the preparation for supplementing the insufficient objectivity that is likely to take place during the process of drafting the standards on changes in current conditions. Thus the author attempts to suggest the analytic method for the decision making related to objective and reasonable determination and regulation of the changes in current conditions through computer based simulation work that considers the cultural properties and surrounding environments under investigation. In order to achieve such research objectives, the author reviewed the subject sites where the cultural property dwarfing phenomenon was expected to occur in case of the permission for the changes in current conditions or where the impact of natural landscape and natural feature on the earth is less than architectural building or artificial structure or where the new policy program is likely to be adopted due to incomplete establishment of current condition change standard within influence investigation area, among other cultural properties with architectural building or artificial structure nearby located in Cheonan city and then selected Cheonansaji Dangganjiju(flag poles) and Jiksanhyun Gwana(government office). The author then undertook the quantitative visibility analysis in order to determine the comprehensive prospect rights for the cultural properties and surrounding environments concerned.