• Title/Summary/Keyword: vertical control

Search Result 1,659, Processing Time 0.031 seconds

The Image Changes in the Control Panelipse Radiography by the Control of the Profile Index (Profile Index에 따른 Panelipse Ⅱ 방사선 상층의 변화)

  • Cho Chul-Ho;Sung Jae-Hyun
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.20 no.1
    • /
    • pp.71-78
    • /
    • 1990
  • This research was made to investigate the change of the image layer and of the vertical and horizontal magnification on the Panelipse radiographic image by the control of profile index. Using the Panelipse, a series of 60 exposures were taken with the steel balls placed in the holes of the plastic model plate, and then evaluated by 4 observers. Two points were assigned for a reading of sharp, one for middling sharp, and zero for unsharp. Each ball image then could be given a total reader score of 0 to 8. The author analyzed the image layer as defined by a sharpness score of 6 or more. The results obtained were as follows: As the profile index was increased, the shape of the image layer was not changed, and the width of the image layer was increased, and the position of the layer shifted away from the rotation center. As the profile index was increased, the ranges of vertical and horizontal magnification was increased, especially the ranges of horizontal magnification was greater than that of vertical magnification.

  • PDF

The effect of human demineralized freeze-dried xenograft on vertical bone formation in beagle dogs (탈회동결건조골이 수직골 형성에 미치는 영향)

  • Park, Ju-Hee;Kwon, Young-Hyuk;Park, Joon-Bong;Chung, Jong-Hyuk;Shin, Seung-Il;Herr, Yeek
    • Journal of Periodontal and Implant Science
    • /
    • v.38 no.1
    • /
    • pp.75-82
    • /
    • 2008
  • Purpose: The purpose of this study was to evaluate exophytically vertical bone formation in the mandibular premolar area of beagle dogs by the concept of guided bone regeneration with a titanium reinforced e-PTFE membrane combined with human demineralized freeze-dried bone. Materials and Methods: Four one-year old beagle dogs were divided into control and experimental group. All mandibular premolars were extracted and surgical vertical defects of 5 mm in height were created in the extracted sockets. At 8 weeks after the extraction, TR e-PTFE membrane sized with 8 mm in length, 5 mm in width, and 4 mm in height was placed on the decorticated mandible, fixed with metal pins and covered with full-thickness flap and assigned as control group. In experimental group, decorticated mandibule was treated with TR e-PTFE membrane and human demineralized freeze-dried bone. The animals were sacrificed at 16 weeks after the regenerative surgery, and new bone formation was assessed by histomorphometric as well as statistical analysis. Results: Average of new bone formation was 38% in the control group, whereas was 25% in the experimental group (p<0.05). Average of connective tissue formation was 42% in the experimental group, whereas was 30% in the control group (p<0.05). The lamellar bone formation with haversian canals was observed in the both groups. In the experimental group, the particles of human demineralized freeze-dried bone were observed after 16 weeks and complete resorption of graft was not observed. Conclusion: On the basis of these findings, we conclude that titanium reinforced e-PTFE membrane may be used alone for vertical guided bone regeneration, but demineralized freeze-dried bone has no additional effect on vertical guided bone regeneration.

Trajectory and Attitude Control for a Lunar lander Using a Reference Model (2nd Report)

  • Abe, Akio;Uchiyama, Kenji;Shimada, Yuzo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.531-536
    • /
    • 2003
  • In this paper, a redesigned guidance and control system for a lunar lander is presented. In past studies, the authors developed a trajectory and attitude control system which achieves the vertical soft landing on the lunar surface. It is confirmed that the system has a good tracking ability to a predefined profile and good robustness against a thruster failure mode where a partial failure of clustered engines was assumed. However, under the previous control laws, the landing point tends to be shifted, in response to the system parameter values, from a target point. Also, an unbalanced moment due to a thruster failure mode was not considered in the simulation. Therefore, in this study, the downrange control is added to the system to enable the vehicle to land at a pre-assigned target point accurately. Furthermore, inhibiting the effect of the unbalanced moment is attempted thorough redesigning the attitude control system. A numerical simulation was performed to confirm the ability of the proposed system with regard to the above problems. Moreover, in the past simulations, a low initial altitude was assumed as an initial condition: in this study, however, the performance of the proposed system is examined over the whole trajectory from an initial altitude of 10 [km] to the lunar surface.

  • PDF

A Study on the efficient control of an elastic manipulator moving in a vertical plane (수직면에서 작동하는 탄성 매니퓰레이터의 효율적인 제어에 관한 연구)

  • 강준원;이중섭;권혁조;오재윤;정재욱
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.318-322
    • /
    • 1996
  • This paper presents a technique to control a robot which has a flexible manipulator moving in a vertical plane. The flexible manipulator is modeled as an Euler-Bernoulli beam. Elastic deformation is represented using the assumed modes method. A comparison function which satisfies all geometric and natural boundary conditions of a cantilever beam with an end mass is used as an assumed mode shape. Lagrange's equation is utilized for the development of a discretized model. A control algorithm is developed using a simple PID control technique. The proportional, integral and derivative control gains are determined based on the dominant pole placement method and tuned to show no overshoot and having a short settling time. The effectiveness of the developed control scheme is showed experimentally. In the position control experiment, three different end masses are used. The experimental results shows little overshoot, no steady state error, and less than 2.5 second settling time in case of having an end mass which is equivalent to 45% of the total system weight. Also the residual vibration of the end point is effectively controlled.

  • PDF

PID Control of a flexible robot rotating in vertical plane (수직면에서 회전운동을 하는 탄성로봇의 PID 제어)

  • Kang, Junwon;Oh, Chaeyoun;Kim, Kiho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.11
    • /
    • pp.34-41
    • /
    • 1997
  • This paper presents a technique to control a very flexible robot moving in a vertical plane. The flexible robot is modeled as an Euler-Bernoulli beam. Elastic deformation is approximated using the assmed modes method. A comparison function which satisfies all geometric and natural boundary conditions of a cantilever beam with an end mass is used as an assumed mode shape. Lagrange's equation is utilized for the development of a discretized model. A control algorithm is developed using a simple PID cnotrol tech- nique. The proportional, integral and deivative control gains are determined based on the dominant pole placement method and tuned to show no overshoot and no steady state error, and short settling time. The effectiveness of the developed control scheme is showed in the hub angular diaplacement control experiment. Three different end masses are uned in the experiment. The experimental results show that developed control algorithm is very effective showing little overshoot, no steady state error, and less than 2.5 second settl- ing time in case of having an end mass which is equivalent to 45% of the manipulator mass. Also the experimental results show that the residual vibration fo the end point is effectively controlled.

  • PDF

Comparison of the Static Balance Ability according to the Subjective Visual Vertical in Healthy Adults

  • Kwon, Jung Won;Yeo, Sang Seok
    • The Journal of Korean Physical Therapy
    • /
    • v.32 no.3
    • /
    • pp.152-156
    • /
    • 2020
  • Purpose: The subjective visual vertical (SVV) test is used to evaluate the otolith function in the inner ear. This study compared the different balance ability according to the results of the SVV in healthy adults. Methods: This study recruited 30 normal healthy subjects who did not have neurological and musculoskeletal disorders. The subjects were divided into experimental and control groups based on the results of SVV: experimental group, >2°; control group, <2°. The static balance ability was evaluated using the Fourier Index, which could evaluate the balance capacity objectively and quantitatively. Results: The mean angle of the SVV in the experimental and control groups was 4.44° and 0.59°, respectively. In the result of the Fourier series, the F1 frequency band in the experimental group showed a significantly higher value under one condition compared to the control group (p<0.05). In the F2-4 and F5-6 frequency bands, the experimental group showed a significant increase in the Fourier series value under the four conditions compared to the control group (p<0.05). In the F7-8 frequency band, significantly higher values of the Fourier series were observed in the experimental group under the three different conditions (p<0.05). Conclusion: These results showed increased trunk sway while maintaining static balance in the experimental group who showed a larger SVV angle compared to the control group. The SVV can be applied to evaluate the vestibular system and balance ability in normal adults.

THE PANORAMIC RADIOGRAPHIC STUDY OF THE VERTICAL MANDIBULAR ASYMMETRY OF IN THE TMJ DISORDER PATIENTS (파노라마 X-선사진을 이용한 측두하악관절 장애환자의 수직적 하악비대칭에 관한 연구)

  • Yoon Gui-Hyeon;Choi Soon-Chul
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.23 no.2
    • /
    • pp.315-322
    • /
    • 1993
  • To evaluate of the relationship between the TMJ disorder and the vertical mandibular asymmetry, the author analyzed the differences between condylar heights, ramus heights and mandibular heights of both sides. All measurements were performed with a digital micrometer on the panoramic radiographs of 36 TMJ disorder patients and 30 normal control group. The differences were expressed in millimeters and percentage using the following formula; |(R-L)/(R+L)|×100% The results were as follows : 1. The condylar height difference was greater of in patient group (1.86±1.66㎜) than that of in control group (1.22±0.85㎜)(p<0.05). But there was no significant difference in the condylar height ratio difference between patient group (11.67㎜11.44%) and control group (7.64±621%) (p>0.05). 2. The ramus height difference and ramus height ratio difference of patient group (4.52±3.70㎜, 4.39±3.49%) were greater than those of control group (2.64±2.13㎜, 2.46±2.02%)(p<0.05, p<0.01). 3. The mandibular height difference and mandibular height ratio difference of patient group (4.32±3.52㎜, 3.59±2.81%) were greater than those of control group (2.57±2.46㎜, 2.01±1.95%) (p<0.05). 4. The ratio difference in condylar height to ramus height and condylar height to mandibular height of patient group (5.01±4.13%, 3.36±2.88%) were greater than those of control group (2.33±1.78%, 1.90±1.40%) (p<0.01).

  • PDF

Rotation Control of Shoulder Joint During Shoulder Internal Rotation: A Comparative Study of Individuals With and Without Restricted Range of Motion

  • Min-jeong Chang;Jun-hee Kim;Ui-jae Hwang;Il-kyu Ahn;Oh-yun Kwon
    • Physical Therapy Korea
    • /
    • v.31 no.1
    • /
    • pp.72-78
    • /
    • 2024
  • Background: Limitations of shoulder range of motion (ROM), particularly shoulder internal rotation (SIR), are commonly associated with musculoskeletal disorders in both the general population and athletes. The limitation can result in connective tissue lesions such as superior labrum tears and symptoms such as rotator cuff tears and shoulder impingement syndrome. Maintaining the center of rotation of the glenohumeral joint during SIR can be challenging due to the compensatory scapulothoracic movement and anterior displacement of the humeral head. Therefore, observing the path of the instantaneous center of rotation (PICR) using the olecranon as a marker during SIR may provide valuable insights into understanding the dynamics of the shoulder joint. Objects: The aim of the study was to compare the displacement of the olecranon to measure the rotation control of the humeral head during SIR in individuals with and without restricted SIR ROM. Methods: Twenty-four participants with and without restricted SIR ROM participated in this study. The displacement of olecranon was measured during the shoulder internal rotation control test (SIRCT) using a Kinovea (ver. 0.8.15, Kinovea), the 2-dimensional marker tracking analysis system. An independent t-test was used to compare the horizontal and vertical displacement of the olecranon marker between individuals with and without restricted SIR ROM. The statistical significance was set at p < 0.05. Results: Vertical displacement of the olecranon was significantly greater in the restricted SIR group than in the control group (p < 0.05). However, no significant difference was observed in the horizontal displacement of the olecranon (p > 0.05). Conclusion: The findings of this study indicated that individuals with restricted SIR ROM had significantly greater vertical displacement of the olecranon. The results suggest that the limitation of SIR ROM may lead to difficulty in rotation control of the humeral head.

Development of Tire Vertical Force Estimation Algorithm in Real-time using Tire Inner Surface Deformation (타이어 내부 표면 변형량을 이용한 타이어 수직하중 실시간 추정 알고리즘 개발)

  • Lee, Jaehoon;Kim, Jin-Oh;Heo, Seung-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.3
    • /
    • pp.142-147
    • /
    • 2013
  • Over the past few years, intelligent tire is developed very actively for more accurate measurement of real-time tire forces generated during vehicle driving situation. Information on the force of intelligent tire could be used very usefully to chassis control systems of a vehicle. Intelligent tire is based on deformation of tire's inner surface from the waveform of a SAW, or Surface Acoustic Wave. The tire vertical force is estimated by using variance analysis of sensor signals. The estimated tire vertical force is compared with the tire vertical force generated during vehicle driving situation in real-time environment. The scope of this paper is a correlation study between the measured sensor signals and the tire vertical force generated during vehicle driving situation.