• Title/Summary/Keyword: vertical columns

Search Result 249, Processing Time 0.026 seconds

Behavior of the Wall System with Transfer Girder and Columns. (상부 전단벽 하부 프레임 구조를 갖는 시스템의 수직하중에 대한 거동)

  • 홍성걸;문종우;박홍근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.456-461
    • /
    • 1998
  • This paper presents the results from a combination of strut-and-tie model and analytical study that investigated the ultimate strength of wall system with frame supports. Strut-and-tie models show reasonable force flows and upper bound solution is compared to the results from FEM analysis. The results shows that two main parameters - transfer girder depth and column width - yield good estimation of the ultimate strength of the system. Vertical and horizontal reinforcements of the transfer girder add few strength to the whole system. The proposed design strength formula shows good agreement with the results from FEM analysis.

  • PDF

A Study on the Effect of Construction Time in the Column Shortening in High-Rise Building (초고층 구조물에서 기둥축소에 대한 시공기간의 영향에 관한 연구)

  • 정은호;김희철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.10a
    • /
    • pp.267-274
    • /
    • 1996
  • Differential shortening of vertical members in high-rise buildings affect other structural members that have to be considered such as horizontal members and exterior cladding. of many elements which affect the total amount of shortening, different loading history mainly comes from the different construction time. Shortening of 66 story concrete columns were investigated and compared according to the different construction time, little difference was found between the total shortening of interior and that of exterior column.

  • PDF

Experimental study of a modeled building frame supported by pile groups embedded in cohesionless soil

  • Ravi Kumar Reddy, C.;Gunneswara Rao, T.D.
    • Interaction and multiscale mechanics
    • /
    • v.4 no.4
    • /
    • pp.321-336
    • /
    • 2011
  • This paper presents the results of static vertical load tests carried out on a model building frame supported by pile groups embedded in cohesionless soil (sand). The effect of soil interaction on displacements and rotation at the column base and also the shears and bending moments in the columns of the building frame were investigated. The experimental results have been compared with those obtained from the finite element analysis and conventional method of analysis. Soil nonlinearity in the lateral direction is characterized by the p-y curves and in the axial direction by nonlinear vertical springs along the length of the piles (${\tau}-z$ curves) at their tips (Q-z curves). The results reveal that the conventional method gives the shear force in the column by about 40-60%, the bending moment at the column top about 20-30% and at the column base about 75-100% more than those from the experimental results. The response of the frame from the experimental results is in good agreement with that obtained by the nonlinear finite element analysis.

A Seismic Design of RC Underground Subway Structure (지중 RC 도시지하철고 구조물의 내진설계)

  • Jeong, Jae-Pyoung;Im, Tong-Won;Lee, Seong-Lo;Kim, Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.357-362
    • /
    • 2000
  • This Paper presents dynamic analysis of underground R/C Subway Structure, subjected to seismic actions. Earthquakes brought serious damage to RC subway Structure. Foe studying the collapse mechanism of underground RC Subway, seismic of a subway station is simulated in using FEM program ASP2000 of two-dimension based on the path dependent RC elastic model, soil foundation and interfacial models. The shear failure of intermediate vertical columns is founds to be the major cause of the structural collapse. According to FEM simulation of the failure mechanism, it is considered that the RC column would lose axial load carrying capacity after the occurrence of the localized diagonal shear cracks , and sudden failure of the outer frame would be followed. Specially, the shear stress in the middle slab reaches maximum shear capacity. So, the Structure would fail in the middle slab as a result of erasing the vertical ground motion computation.

  • PDF

Settlement of and load distribution in a granular piled raft

  • Madhav, Madhira R.;Sharma, J.K.;Sivakumar, V.
    • Geomechanics and Engineering
    • /
    • v.1 no.1
    • /
    • pp.97-112
    • /
    • 2009
  • The interactions between a granular pile and raft placed on top are investigated using the continuum approach. The compatibility of vertical and radial displacements along the pile - soil interface and of the vertical displacements along the raft - top of ground interfaces are satisfied. Results show that consideration of radial displacement compatibility does not influence the settlement response of or sharing of the applied load between the granular pile and the raft. The percentage load carried by the granular pile (GP) increases with the increase of its stiffness and decreases with the increase of the relative size of raft. The normal stresses at the raft - soil interface decrease with the increase of stiffness of GP and/or relative length of GP. The influences of GP stiffness and relative length of GP are found to be more for relatively large size of raft. The percentage of load transferred to the base of GP increases with the increase of relative size of raft.

On soil-structure interaction models to simulate free vibrations and behavior under seismic loads of a RC building supported by a particular shallow foundation

  • Soelarso Soelarso;Jean-Louis Batoz;Eduard Antaluca;Fabien Lamarque
    • Coupled systems mechanics
    • /
    • v.12 no.5
    • /
    • pp.461-479
    • /
    • 2023
  • The paper deals with the finite element modelling of the free vibration and structural behavior of a particular four-floor reinforced concrete structure subjected to static equivalent seismic loads and supported by a shallow foundation system called SNSF (Spider Net System Footing). The two FE models are a simple 2D Matlab model and a detailed 3D model based on solid elastic elements using Altairworks (Hypermesh and Optistruct). Both models can simulate the soil structure interaction. We concentrate on the behavior of a representative cell involving two columns on five levels. The influence of the boundary conditions on the external vertical planes of the domain are duly studied. The Matlab model appears relevant for a primary estimation of frequencies and stiffness of the whole structure under vertical and lateral loads.

Vibration Control of Large Scale Structure with Beam-End Rotation Type Friction Damper (보단부 회전형감쇠기를 이용한 대형구조물의 진동제어)

  • Lee, Sang-Hyun;Woo, Sung-Sik;Chung, Lan;Cho, Seung-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.452-458
    • /
    • 2007
  • The vertical extension of a building in general remodeling process increases both gravity and seismic loads by simply adding masses to the building. In this study, a vertical extension structural module (VESM) is proposed for enhancing seismic performance of the existing buildings by utilizing the story-increased parts. The proposed VESM is composed of steel column, steel beam, and beam-end rotational damper. The steel columns are connected to the shear walls and transfer the wall rotation in out-of plane to the steel beam, and then the beam-end rotational damper dissipates the earthquake-induced energy. Numerical analysis result from a cantilever beam of which end-rotation is restricted by rotational damper indicates that the displacement, base shear, and base overturning moment of the existing structures showing cantilever behavior can be significantly reduced by using the proposed method. Also, it is observed that friction-type rotational damper is effective than viscous one.

  • PDF

Analysis of Material Tests for Predicting and Correcting the Shortening of Vertical Members (수직부재 축소량 예측 및 보정을 위한 재료시험 분석)

  • Park, Hee-Gon;Kwon, Hae-Won;Lee, Jin-Woo;Bae, Yeoun-Ki;Youn, Kang-Sup;Lee, Jae-Sam
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.173-174
    • /
    • 2009
  • With the recent emergence of high rise buildings, this study was conducted in order to examine shortening, which has been used only in civil engineering structures, in such buildings. Examination of the shortening of vertical members is basically focused on deformations caused by load applied to concrete, material characteristics, etc. Shortening is analyzed through calculating parameters from the factors or characteristics of concrete, but analysis in the aspect of material tests has been somewhat unsatisfactory. Thus, this study purposed to analyze basic material test items for correcting the shortening of vertical members, namely, columns, to determine the reliability of material tests before parameter calculation for correcting shortening, and to examine the performance of material tests.

  • PDF

Seismic Performance Enhancement of Building Structures with Beam-end Rotation Type Dampers (보단부 회전형감쇠기를 이용한 건축구조물의 내진성능보강)

  • Woo, Sung-Sik;Lee, Sang-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.6
    • /
    • pp.589-597
    • /
    • 2008
  • The vertical extension of a building in general remodeling process increases both gravity and seismic loads by simply adding masses to the building. In this study, a vertical extension structural module(VESM) is proposed for enhancing seismic performance of the existing buildings by utilizing the story-increased parts. The proposed VESM is composed of steel column, steel beam, and beam-end rotational damper. The steel columns are connected to the shear walls and transfer the wall rotation in out-of plane to the steel beam, and then the beam-end rotational damper dissipates the earthquake-induced energy. Numerical analysis result from a cantilever beam of which end-rotation is restricted by rotational damper indicates that the displacement, base shear, and base overturning moment of the existing structures showing cantilever behavior can be significantly reduced by using the proposed method. Also, it is observed that friction-type rotational damper is effective than viscous one.

Shake table testing of confined adobe masonry structures

  • Khan, Faisal Zaman;Ahmad, Muhammad Ejaz;Ahmad, Naveed
    • Earthquakes and Structures
    • /
    • v.20 no.2
    • /
    • pp.149-160
    • /
    • 2021
  • Buildings made using the locally available clay materials are amongst the least expensive forms of construction in many developing countries, and therefore, widely popular in remote areas. It is despite the fact that these low-strength masonry structures are vulnerable to seismic forces. Since transporting imported materials like cement and steel in areas inaccessible by motorable roads is challenging and financially unviable. This paper presents, and experimentally investigates, adobe masonry structures that utilize the abundantly available local clay materials with moderate use of imported materials like cement, aggregates, and steel. Shake-table tests were performed on two 1:3 reduce-scaled adobe masonry models for experimental seismic testing and verification. The model AM1 was confined with vertical lightly reinforced concrete columns provided at all corners and reinforced concrete horizontal bands (i.e., tie beams) provided at sill, lintel, and eave levels. The model AM2 was confined only with the horizontal bands provided at sill, lintel, and eave levels. The models were subjected to sinusoidal base motions for studying the damage evolution and response of the model under dynamic lateral loading. The lateral forcedeformation capacity curves for both models were developed and bi-linearized to compute the seismic response parameters: stiffness, strength, ductility, and response modification factor R. Seismic performance levels, story-drift, base shear coefficient, and the expected structural damages, were defined for both the models. Seismic performance assessment of the selected models was carried out using the lateral seismic force procedure to evaluate their safety in different seismic zones. The use of vertical columns in AM1 has shown a considerable increase in the lateral strength of the model in comparison to AM2. Although an R factor equal to 2.0 is recommended for both the models, AM1 has exhibited better seismic performance in all seismic zones due to its relatively high lateral strength in comparison to AM2.