• Title/Summary/Keyword: vertical columns

Search Result 256, Processing Time 0.026 seconds

An Analysis Code and a Planning Tool Based on a Key Element Index for Controlled Explosive Demolition

  • Isobe, Daigoro
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.4
    • /
    • pp.243-254
    • /
    • 2014
  • In this study, a demolition analysis code using the adaptively shifted integration (ASI)-Gauss technique, which describes structural member fracture by shifting the numerical integration point to an appropriate position and simultaneously releasing the sectional forces in the element, is developed. The code was verified and validated by comparing the predicted results with those of several experiments. A demolition planning tool utilizing the concept of a key element index, which explicitly indicates the contribution of each structural column to the vertical load capacity of the structure, is also develped. Two methods of selecting specific columns to efficiently demolish the whole structure are demonstrated: selecting the columns from the largest index value and from the smallest index value. The demolition results are confirmed numerically by conducting collapse analyses using the ASI-Gauss technique. The numerical results suggest that to achieve a successful demolition, a group of columns with the largest key element index values should be selected when explosives are ignited in a simultaneous blast, whereas those with the smallest should be selected when explosives are ignited in a sequence, with a final blast set on a column with large index value.

Experimental investigation of local damage in high strength concrete columns using a shaking table

  • Bairrao, Rogerio;Kacianauskas, Rimantas;Kliukas, Romualdas
    • Structural Engineering and Mechanics
    • /
    • v.19 no.5
    • /
    • pp.581-602
    • /
    • 2005
  • In this paper the accumulation of local damage during the cyclic loading in reinforced high-strength concrete columns is experimentally investigated. Two identical column specimens with annular cross-section and spiral reinforcement were designed and two tests, up to failure, under the action of a constant vertical concentrated force and a time-dependent concentrated horizontal force, were carried out at the LNEC shaking tables facility. Sine type signals, controlled in amplitude, frequency and time duration were used for these experiments. The concept of local damage based on local stiffness degradation is considered in detail and illustrated by experimental results. The specimens were designed and reinforced in such a way that the accumulation of damage was predicted by dominating deformations (cracking and crushing of the concrete) while the increasing of the loading values was a dominating factor of damage. It was observed that the local damage of HSC columns has exposed their anisotropic local behaviour. The damage accumulation was slightly different from the expected in accordance with the continuum damage concept, and a partial random character was observed.

Investigation of Structural Damage in Bearing Wall Buildings with Pilotis by 2017 Pohang Earthquake (2017 포항지진에 의한 필로티형 내력벽건물의 구조손상 분석)

  • Eom, Tae Sung;Lee, Seung Jae;Park, Hong Gun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.9-18
    • /
    • 2019
  • In 2017 Pohang Earthquake, a number of residential buildings with pilotis at their first level were severely damaged. In this study, the results of an analytical investigation on the seismic performance and structural damage of two bearing wall buildings with pilotis are presented. The vibration mode and lateral force-resisting mechanism of the buildings with vertical and plan irregularity were investigated through elastic analysis. Then, based on the investigations, methods of nonlinear modeling for walls and columns at the piloti level were proposed. By performing nonlinear static and dynamic analyses, structural damages of the walls and columns at the piloti level under 2017 Pohang Earthquake were predicted. The results show that the area and arrangement of walls in the piloti level significantly affected the seismic safety of the buildings. Initially, the lateral resistance of the piloti story was dominated mainly by the walls resisting in-plane shear. After shear cracking and yielding of the walls, the columns showing double-curvature flexural behavior contributed significantly to the residual strength and ductility.

Mechanical Amplification of Relative Movements in Damped Outriggers for Wind and Seismic Response Mitigation

  • Mathias, Neville;Ranaudo, Francesco;Sarkisian, Mark
    • International Journal of High-Rise Buildings
    • /
    • v.5 no.1
    • /
    • pp.51-62
    • /
    • 2016
  • The concept of introducing viscous damping devices between outriggers and perimeter columns in tall buildings to provide supplementary damping and improve performance, reduce structural costs, and increase available usable area was developed and implemented by Smith and Willford (2007). It was recognized that the relative vertical movement that would occur between the ends of outriggers and columns, if they were not connected, could be used to generate damping. The movements, and correspondingly damping, can potentially be significantly increased by amplifying them using simple "mechanisms". The mechanisms also make it possible to increase the number of available dampers and thus further increase supplementary damping. The feasibility of mechanisms to amplify supplementary damping and enhance structural performance of tall, slender buildings is studied with particular focus on its efficacy in improving structural performance in wind loads.

The Adaptation of Sangrokhadan Technique on the Color Painting of Wooden Buildings in the Goryeo Dynasty (고려시대 목조건축물의 상록하단(上綠下丹) 단청기법 수용)

  • Lee, Eun-Hee
    • Journal of architectural history
    • /
    • v.25 no.5
    • /
    • pp.15-25
    • /
    • 2016
  • The color that painted on the ground of Dancheong becomes Gachil(basecoat)-Dancheong and underpainting of Moro-Dancheong or Geum-Dancheong. So, the color of underpainting is the most important element that determines impression of the building. Thus, the architecture after using "Sangrokhadan" has different characters from what it had been. In the existing perception toward the background color of Dancheong, it was considered the characters of Korean Dancheong so-called "Sangrokhadan" that paint vertical elements like columns red and upper part of the columns green. But this study examined the color of Dancheong according to the era and region before and after Goryeo Dynasty era, then it reveals that Sangrokhadan technique was applied from the 14th century in the late Goryeo Dynasty. One of the Goryeo architecture, Geungnakjeon Hall of Bongjeongsa Temple is thought to be a previous style that is not applied "Sangrokhadan" technique because old elements are painted red pigment.

Dynamic Stability of Vertical Columns Subjected to a Subtangential Froce (아접선력을 받는 수직 기둥의 동적 안정성)

  • 박영필
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.313-318
    • /
    • 1996
  • This paper deals with the dynamic behavior of elastic columns under the action of subtangential forces. The above subtangential force can be-realized by the combination force between the dead load of thetip mass and the pure follower thrust. The tip mass is assumed to be a rigid body not a mass point as it has been assumed so for. The equations of motion are formulated based on extended Hamilton's principle and the finite element method. It is shown that nonconservativeness of the applied force has greatly effect on the instability type. It is found that the critical subtangential force can also be changed by consideration of the tip mass parameters taking into account of its magnitude, rotary inertia and size. The influence of the self-weight of the column on the change of the critical force is also investigated.

  • PDF

An Experimental Study on a Bond Stress in Concrete Filled Circular Steel Tubular Column Strengthened by the Stiffener (스티프너로 보강한 콘크리트 충전 원형 강관기둥의 부착응력에 관한 실험적 연구)

  • Park, Sung-Moo;Kim, Sung-Su;Kim, Won-Ho;Lee, Hyung-Seok
    • Journal of Korean Association for Spatial Structures
    • /
    • v.2 no.2 s.4
    • /
    • pp.51-58
    • /
    • 2002
  • This paper is presented an experimental studies on bond stress between steel and concrete in concrete filled steel tubes. In the actual building frames, vertical dead and live loads on beams are usually transferred to columns by beam-to-column connections. In case when concrete filled steel tubes are used as columns of an actual building frame which has a simple connection, shear forces in the beam ends are not directly transferred to the concrete core but directly to the steel tube. Provided that the bond effect between steel tube and concrete core should not be expected, none of the end shear in the beams would be transferred to the concrete core but only to the steel tube. Therefore, it is important to investigate the bond strength between steel tube and concrete core in the absence of shear connectors.

  • PDF

Experimental Study on Bond Stress of Concrete Filled Rectangular Steel Tubular Composite Column Subjected to Axial Load (중심 축 하중을 받는 충전각형강관 합성기둥의 부착응력에 관한연구)

  • Lee, Hyung-Seok;Park, Sung-Moo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.3 no.3 s.9
    • /
    • pp.105-110
    • /
    • 2003
  • This paper is presented an experimental studies on bond stress between steel and concrete in concrete filled Rectangular steel tubes. In the actual building frames, vertical dead and live loads on beams are usually transferred to columns by beam-to-column connections. In case when concrete filled steel tubes are used as columns of an actual building frame which has a simple connection, shear forces in the beam ends are not directly transferred to the concrete core but directly to the steel tube. Provided that the bond effect between steel tube and concrete core should not be expected, none of the end shear in the beams would be transferred to the concrete core but only to the steel tube. Therefore, it is important to investigate the bond strength between steel tube and concrete core in the absence of shear connectors.

  • PDF

Effect of the Settlement Reduction to each Geosynthetic Reinforced Pile Supported Embankments Design Condition (토목섬유보강 성토지지말뚝의 설계조건별 침하억제 효과)

  • Lee, Il-Wha;Lee, Sung-Jin;Lee, Su-Hyung;Moon, In-Ho
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1519-1524
    • /
    • 2009
  • Construction of high-speed concrete track embankments over soft ground needs many of the ground improvement techniques. Drains, surcharge loading, and geosynthetic reinforcement, have all been used to solve the settlement and embankment stability issues associated with construction on soft soils. However, when time constraints are critical to the success of the project, another measures should be considered. Especially, since the design criteria of residual settlement is limited as 30mm for concrete track embankment, it is very difficult to satisfy this allowable settlement by using the former construction method. Pile net method consist of vertical columns that are designed to transfer the load of the embankment through the soft compressible soil layer to a firm foundation and one or more layers of geosynthetic reinforcement placed between the top of the columns and the bottom of the embankment. In this paper, three cases with different embankment height and number of geosynthetic reinforcement, were studied through FEM analysis for efficient use of pile net method.

  • PDF

Evaluation of Woodchip and Synthetic Fiber as Biofilter Media for the Treatment of Livestock Stormwater (가축사육단지 강우유출수 처리목적 바이오 필터 여재로서 우드칩과 합성섬유의 평가)

  • Cheng, Jing;Guerra, Heidi B.;Kim, Youngchul
    • Journal of Wetlands Research
    • /
    • v.23 no.1
    • /
    • pp.94-105
    • /
    • 2021
  • Two vertical flow biofilters in series (BFS) employing synthetic fiber (FBF) followed by woodchip (WBF) was investigated in order to assess its potential as an alternative to the typical vertical-horizontal flow configuration in removing nonpoint source pollutants specifically nutrients and organics. These lab-scale column biofilters were operated for 176 days alongside three other columns that were added for control and sampling purposes. The biofilter columns were fed with either a semi-artificial piggery stormwater or artificial stormwater with specific ammonia and nitrate contents. Results reveal that the BFS was more effective than a single biofilter in removing pollutants especially nitrogen. FBF was found to remove up to 100% of ammonia from the stormwater with corresponding increase in nitrate in the outflow which shows evidence of active nitrification. Meanwhile, the succeeding vertical WBF was able to subsequently remove 77% of the nitrate. The effective reduction of nitrate in a vertical flow biofilter was believed to be due to the use of woodchip which can provide a carbon source that is required for denitrification. However, further investigation is needed to support this claim. Nonetheless, the study shows the potential of vertical flow BFS as a nitrogen removal mechanism especially in areas where enough land space for horizontal flow biofilters is limited.