• 제목/요약/키워드: vertical columns

검색결과 256건 처리시간 0.03초

마이크로컬럼 어레이에 적용 가능한 웨이퍼단위의 수직 배선 방법 (Wafer level vertical interconnection method for microcolumn array)

  • 한창호;김현철;강문구;전국진
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2005년도 추계종합학술대회
    • /
    • pp.793-796
    • /
    • 2005
  • In this paper, we propose a method which can improve uniformity of a miniaturized electron beam array for inspection of very small pattern with high speed using vertical interconnection. This method enables the individual control of columns so that it can reduce the deviation of beam current, beam size, scan range and so on. The test device that used vertical interconnection method was fabricated by multiple wafer bonding and metal reflow. Two silicon and one glass wafers were bonded and metal interconnection by melting of electroplated AuSn was performed. The contact resistance was under $10{\Omega}$.

  • PDF

주변이 RC로 구속된 조적조 벽체의 내진성능향상에 관한 실험적 연구 (Experimental Study for Higher Seismic Performance of Confined Masonry Wall System)

  • 김경태;서수연;윤승조;요시무라코지;성기태
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.5-8
    • /
    • 2004
  • In order to investigate the effect of the height of application point of lateral loads and reinforcing steel bars in walls and columns in improving the seismic behavior of confined concrete block masonry walls, an experimental research program is conducted. A total of four one-half scale specimens are tested under repeated lateral loads. Specimens are tested to failure with increasing maximum lateral drifts while a vertical axial load was applied and maintained constant. The constant vertical axial stresses applied are 0, 0.84 and 1.80MPa, while the amount of reinforcements in horizontal and vertical directions are $0\%,\;0.08\%\;and\;0.18\%$ respectively. Test results obtained for each specimen include cracking patterns, load-deflection data, and strains in reinforcement and walls in critical locations. Analysis of test data showed that above parameters generate a considerable effect on the seismic performance of confined concrete block masonry walls.

  • PDF

Seismic performance of R/C structures under vertical ground motion

  • Bas, Selcuk;Lee, Jong-Han;Sevinc, Mukadder;Kalkan, Ilker
    • Computers and Concrete
    • /
    • 제20권4호
    • /
    • pp.369-380
    • /
    • 2017
  • The effects of the vertical component of a ground motion on the earthquake performances of semi-ductile high-rise R/C structures were investigated in the present study. Linear and non-linear time-history analyses were conducted on an existing in-service R/C building for the loading scenarios including and excluding the vertical component of the ground motion. The ratio of the vertical peak acceleration to the horizontal peak acceleration (V/H) of the ground motion was adopted as the main parameter of the study. Three different near-source earthquake records with varying V/H ratio were used in the analyses. The linear time-history analyses indicated that the incorporation of the vertical component of a ground motion into analyses greatly influences the vertical deflections of a structure and the overturning moments at its base. The lateral deflections, the angles of rotation and the base shear forces were influenced to a lesser extent. Considering the key indicators of vertical deflection and overturning moments determined from the linear time-history analysis, the non-linear analyses revealed that the changes in the forces and deformations of the structure with the inclusion of the vertical ground motion are resisted by the shear-walls. The performances and damage states of the beams were not affected by the vertical ground motion. The vertical ground motion component of earthquakes is markedly concluded to be considered for design and damage estimation of the vertical load-bearing elements of the shear-walls and columns.

주철근의 개수 및 단면비에 따른 폭발하중을 받는 철근콘크리트 기둥의 해석적 연구 (Parametric Study on Reinforced Concrete Columns under Blast Load)

  • 최호순;김민숙;이영학
    • 한국전산구조공학회논문집
    • /
    • 제25권3호
    • /
    • pp.219-226
    • /
    • 2012
  • 기둥은 건물에서 하중을 지지하는 중요한 구성요소이므로 기둥의 손상 또는 파괴는 건물의 연쇄붕괴의 원인이 된다. 특히 폭발하중에 의한 기둥의 거동평가는 연쇄붕괴 방지에 있어 중요한 요소이다. 본 논문에서는 축하중을 받고 있는 기둥이 폭발하중을 받을 때의 거동과 폭발 저항성능을 평가하였다. 이를 위해 동일단면적과 비슷한 철근비를 가지는 기둥에서 주 철근의 개수를 달리하여 각 변수에 따른 폭발하중에 대한 폭발 저항성능을 평가하였다. 또한, 동일한 성능을 지니는 기둥에서 단면비를 달리하여 기둥의 폭발 저항성능을 비교하였다. 해석결과, 폭발 직후 충격량에 대한 수직 변형률은 철근의 개수 및 단면비에 영향을 받지 않는 것으로 나타났다. 그러나 수평변형의 경우 폭발압력을 받는 면의 철근 개수가 증가함에 따라 기둥의 저항성능이 증가하는 것으로 나타났다. 또한, 기둥 단면의 단면 2차모멘트가 클수록 폭발하중에 대한 저항 성능 및 복원력이 더 큰 것을 확인하였다.

아웃리거의 중력하중 조절 효과 분석을 위한 사례연구 (Case Studies for Anlayzing Effects of Outriggers on Gravity Load Managements)

  • 강수민;엄태성;김재요
    • 한국전산구조공학회논문집
    • /
    • 제23권3호
    • /
    • pp.255-266
    • /
    • 2010
  • 초고층 건물에서 아웃리거를 이용한 횡력저항시스템이 자주 사용되고 있다. 아웃리거가 외부 기둥과 내부 코어를 연결함으로써 외부 기둥이 횡력저항시스템에 참여할 수 있어 구조적 저항능력이 향상될 수 있다. 그러나 아웃리거는 횡력 뿐만 아니라 중력하중의 조절에도 기여할 수 있다. 하중을 메가 기둥으로 전이시키거나 기둥, 벽체, 파일 등의 연직 부재들 간에 중력하중을 균등하게 분포시키며, 기초 시스템에서의 부등침하를 최소화하기 위하여 중력하중의 흐름이 아웃리거 부재에 의하여 변경될 수 있다. 본 연구에서는 100층 이상의 초고층 사례들에 대한 전산구조해석을 통하여 중력하중 조절에 대한 아웃리거의 효과를 분석한다. 아웃리거 유무에 따른 3차원 모델의 구조해석이 수행되며, 기둥과 파일에서의 중력하중 분포 및 기초 침하가 분석된다. 또한, 완공 단계 뿐만 아니라 시공 단계에서의 중력하중 조절에 대한 아웃리거의 효과도 분석된다.

조선후기 경복궁 근정전 주요 구조재의 맞춤과 이음에 관한 연구 (A Study on the Joint and Splice of wooden Structure at Geunjeongjeon Hall of Gyeongbok Palace in the late Joseon Dynasty)

  • 정연상
    • 건축역사연구
    • /
    • 제16권1호
    • /
    • pp.83-99
    • /
    • 2007
  • This study examines the joint and splice of wooden structure at Geunjeongjeon Hall of Gyengbok Palace, which was constructed in the late Joseon Dynasty. The scope of the study is on the part of columns, the bracket sets, and the frame structure. This research also deals with the relationship between vortical load and horizontal load. Firstly, the examination of the joint and splice methods between the pillar and penetrating ties is on the joint and splice methods of the outer and corner. Through the investigation, it is verified that the joint methods between pillar and penetrating tie on the outer and corner pillars is the method of Sagal joints(cross joints, 사개맞춤). Joints used between pillar and penetrating tie are dovetailed tenon joints, between columns and Anchogong(안초공), between columns and Choikgong(초익공) are tenon joint(장부맞춤). Secondly, the examination of the joint and splice methods of the bracket set is on that of Salmi and Cheomcha(첨차), and Salmi and Janghyeo(장혀). Joints used between Salmi and Cheomcha, Salmi and Janghyeo are halved joint, and between each Janghyeo are stepped dovetailed splice. It is Cheomcha that is used the Jujang-Cheomcha(주장첨차) on center line. Therefore it is connected with each bracket set, which gets to is the strong system, easy and convenient on the construction of that. Thirdly, the frame structure of wooden architecture in royal palace is consist of purlins and beams, Janghyeo(장혀, timber under purlin), tall columns, king posts, etc. Through the investigation, it is verified that the joint and splice methods between purlins and beams are used with the methods of Sungeoteok joint(숭어턱맞춤). It is verified that the joint and splice methods between beams and high columns are used with methods of mortise and tenon joint(장부맞춤), is highly related with tensile force. To reduce the separation of parts, sangi(산지) and tishoi(띠쇠) are used as a counterproposal, which were generally used for architecture in royal Palaces in the late Joseon Dynasty and continued to be used until these days common wooden architecture.

  • PDF

수직다이아프램을 사용한 충전형 각형강관기둥 접합부의 내력평가 (Structural Strength of Beam-to-CFT Connections with Vertical Diaphragm)

  • 김경태;이헌우;김영기;김태진;김종호
    • 한국강구조학회 논문집
    • /
    • 제29권3호
    • /
    • pp.237-247
    • /
    • 2017
  • 본 연구에서는 각형 강관 내부에 수직 다이아프램이 적용된 CFT 기둥 접합부의 구조적 특성에 대해 알아보았다. 각형 CFT 기둥의 거동을 파악하기 위해 실대형 3개 실험체를 제작하여 실험을 수행하였다. 유한요소해석을 통해 다이아프램의 거동을 확인하였으며 접합부 내력식을 제안하였다.

용접조립 각형 CFT 단주의 구조특성에 관한 실험적 연구 (An Experimental Study on Structural Performance of Welded Built-up Square CFT Stub Columns)

  • 이성희;최영환;염경수;김진호;최성모
    • 한국강구조학회 논문집
    • /
    • 제20권5호
    • /
    • pp.645-653
    • /
    • 2008
  • 용접조립 각형강관은 얇은 강판을 L형으로 절곡한 4개의 단위 부재를 플레어 용접으로 용접한 강관으로 용접조립 각형강관이 CFT 기둥으로 사용될 경우 콘크리트와 강관 폭의 중앙에 설치된 리브가 국부좌굴을 방지하는 역할을 하며 강관은 내부의 콘크리트의 구속하여 콘크리트의 구조내력을 향상시키는 역할을 한다. 본 연구에서는 용접조립 각형강관기둥의 제작방법을 소개하고 용접조립 각형강관과 용접조립 각형CFT 기둥 의 구조성능을 평가하기 위해 강관의 형상(용접조립 각형강관, 일반강관)과 폭두께비(B/t=50, 58, 67), 콘크리트의 강도(f'c=, 10MPa, 40MPa) 를 변수로 총 15개의 실대형 실험체를 제작하여 구조실험을 수행하였으며 용접조립 각형강관의 단면효율과 구조내력의 우수성을 확인하였다.

Numerical modelling of the behavior of bare and masonry-infilled steel frames with different types of connections under static loads

  • Galal Elsamak;Ahmed H. Elmasry;Basem O. Rageh
    • Computers and Concrete
    • /
    • 제33권1호
    • /
    • pp.103-119
    • /
    • 2024
  • In this paper, the non-linear behavior of masonry-infill and bare steel frames using different beam-column connections under monotonic static loading was investigated through a parametric study. Numerical models were carried out using one- and two-dimensional modelling to validate the experimental results. After validating the experimental results by using these models, a parametric study was carried out to model the behavior of these frames using flushed, extended, and welded connections. The results showed that using the welded or extended connection is more efficient than using the flushed type in masonry-infilled steel frames, since the lateral capacities, initial stiffness, and toughness have been increased by 155%, 601%, and 165%, respectively in the case of using welded connections compared with those used in bare frames. The FE investigation was broadened to study the influence of the variation of the uniaxial column loads on the lateral capacities of the bare/infill steel frames. As the results showed when increasing the amount of uniaxial loading on the columns, whether in tension or compression, causes the lateral load capacity of the columns to decrease by 26% for welded infilled steel frames. Finally, the influence of using different types of beam-to-column connections on the vertical capacities of the bare/infill steel frames under settlement effect was also studied. As a result, it was found that, the vertical load capacity of all types of frames and with using any type of connections is severely reduced, and this decrease may reach 62% for welded infilled frames. Furthermore, the flushed masonry-infilled steel frame has a higher resistance to the vertical loads than the flushed bare steel frame by 133%.

Failure analysis of steel column-RC base connections under lateral cyclic loading

  • Demir, Serhat;Husem, Metin;Pul, Selim
    • Structural Engineering and Mechanics
    • /
    • 제50권4호
    • /
    • pp.459-469
    • /
    • 2014
  • One of the most important structural components of steel structures is the column-base connections which are obliged to transfer horizontal and vertical loads safely to the reinforced concrete (RC) or concrete base. The column-base connections of steel or composite steel structures can be organized both moment resistant and non-moment resistant leading to different connection styles. Some of these connection styles are ordinary bolded systems, socket systems and embedded systems. The structures are frequently exposed to cycling lateral loading effects causing fatal damages on connections like columns-to-beams or columns-to-base. In this paper, connection of steel column with RC base was investigated analytically and experimentally. In the experiments, bolded connections, socket and embedded connection systems are taken into consideration by applying cyclic lateral loads. Performance curves for each connection were obtained according to experimental and analytical studies conducted and inelastic behavior of connections was evaluated accordingly. The cyclic lateral performance of the connection style of embedding the steel column into the reinforced concrete base and strengthening of steel column in upper level of base connection was found to be higher and effective than other connection systems. Also, all relevant test results were discussed.