• 제목/요약/키워드: vertical columns

검색결과 252건 처리시간 0.022초

Seismic behavior of frames with innovative energy dissipation systems (FUSEIS 1-1)

  • Dougka, Georgia;Dimakogianni, Danai;Vayas, Ioannis
    • Earthquakes and Structures
    • /
    • 제6권5호
    • /
    • pp.561-580
    • /
    • 2014
  • After strong earthquakes conventional frames used worldwide in multi - story steel buildings (e.g. moment resisting frames) are not well positioned according to reparability. Two innovative systems for seismic resistant steel frames incorporated with dissipative fuses were developed within the European Research Program "FUSEIS" (Vayas et al. 2013). The first, FUSEIS1, resembles a vertical Vierendeel beam and is composed of two closely spaced strong columns rigidly connected to multiple beams. In the second system, FUSEIS2, a discontinuity is introduced in the composite beams of a moment resisting frame and the dissipative devices are steel plates connecting the two parts. The FUSEIS system is able to dissipate energy by means of inelastic deformations in the fuses and combines ductility and architectural transparency with stiffness. In case of strong earthquakes damage concentrates only in the fuses which behave as self-centering systems able to return the structure to its initial undeformed shape. Repair work after such an event is limited only to replacing the fuses. Experimental and numerical investigations were performed to study the response of the fuses system. Code relevant design rules for the seismic design of frames with dissipative FUSEIS and practical recommendations on the selection of the appropriate fuses as a function of the most important parameters and member verifications have been formulated and are included in a Design Guide. This article presents the design and performance of building frames with FUSEIS 1-1 based on models calibrated on the experimental results.

Numerical hydrodynamic analysis of an offshore stationary-floating oscillating water column-wave energy converter using CFD

  • Elhanafi, Ahmed;Fleming, Alan;Macfarlane, Gregor;Leong, Zhi
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제9권1호
    • /
    • pp.77-99
    • /
    • 2017
  • Offshore oscillating water columns (OWC) represent one of the most promising forms of wave energy converters. The hydrodynamic performance of such converters heavily depends on their interactions with ocean waves; therefore, understanding these interactions is essential. In this paper, a fully nonlinear 2D computational fluid dynamics (CFD) model based on RANS equations and VOF surface capturing scheme is implemented to carry out wave energy balance analyses for an offshore OWC. The numerical model is well validated against published physical measurements including; chamber differential air pressure, chamber water level oscillation and vertical velocity, overall wave energy extraction efficiency, reflected and transmitted waves, velocity and vorticity fields (PIV measurements). Following the successful validation work, an extensive campaign of numerical tests is performed to quantify the relevance of three design parameters, namely incoming wavelength, wave height and turbine damping to the device hydrodynamic performance and wave energy conversion process. All of the three investigated parameters show important effects on the wave-pneumatic energy conversion chain. In addition, the flow field around the chamber's front wall indicates areas of energy losses by stronger vortices generation than the rear wall.

Poly-jog을 사용한 그리디 스위치박스 배선기 (A Greedy Poly-jog Switch-Box Router(AGREE))

  • 이철동;정정화
    • 대한전자공학회논문지
    • /
    • 제26권4호
    • /
    • pp.88-97
    • /
    • 1989
  • 본 논문에서 제안하는 switch-box 배선기는 greedy poly-jog 배선기와 via 최소화기로 나누어진다. Greedy poly-jog 배선기는 Luk의 greedy swich-box 배선 알고리듬을 기본으로 하며, 수평track에 metal을 수직track에 poly-silicon을 배선하는 제한을 완화하여 필요한 경우에는 수평 track에 poly-silicon을 배선함으로써 배선영역의 수평track을 증가시키지 않고 배선할 수 있다. Via 최소화기는 배선된 wire의 각 corner를 펴거나 wire 선분을 평행이동하거나 metal을 poly-silicon 및 poly-silicon을 metal로 바꿈으로써 via와 배선길이를 줄이는 과정을 수행한다. 본 배선기는 column 방향으로 배선영역을 scan함으로써 배선을 완료하며, 시간복잡도는 O(M(N+ Nnet)) 이다. 여기서, M, N, Nnet은 각각 배선 column의 수, 배선 row의 수, net의 수이다.

  • PDF

Determination of collapse safety of shear wall-frame structures

  • Cengiz, Emel Yukselis;Saygun, Ahmet Isin
    • Structural Engineering and Mechanics
    • /
    • 제27권2호
    • /
    • pp.135-148
    • /
    • 2007
  • A new finite shear wall element model and a method for calculation of 3D multi-storied only shear walled or shear walled - framed structures using finite shear wall elements assumed ideal elasto - plastic material are developed. The collapse load of the system subjected to factored constant gravity loads and proportionally increasing lateral loads is calculated with a method of load increments. The shape functions over the element are determined as a cubic variation along the story height and a linear variation in horizontal direction because of the rigid behavior of the floor slab. In case shear walls are chosen as only one element in every floor, correct solutions are obtained by using this developed element. Because of the rigid behavior of the floor slabs, the number of unknowns are reduced substantially. While in framed structures, classical plastic hinge hypothesis is used, in nodes of shear wall elements when vertical deformation parameter is exceeded ${\varepsilon}_e$, this node is accepted as a plastic node. While the system is calculated with matrix displacement method, for determination of collapse safety, plastic displacements and plastic deformations are taken as additional unknowns. Rows and columns are added to the system stiffness matrix for additional unknowns.

하부 플레넘 구조물 조건을 고려한 클린룸의 편류 개선 방법 (Improving Vertical Airflow Uniformity Considering the Structures of the Lower Plenum in a Cleanroom)

  • 김영섭;하만영
    • 설비공학논문집
    • /
    • 제20권1호
    • /
    • pp.17-25
    • /
    • 2008
  • To achieve the unidirectional airflow in a cleanroom, we need to predict accurately the static pressure losses at the lower plenum and to control properly the opening pressure ratio of access floor panels based on these pressure losses. At first, the present study proposed a correlation to predict the velocity distribution at the lower plenum, because the accuracy to predict pressure losses at the lower plenum depends on how to calculate the velocity correctly against the inner structures at the lower plenum. In the second place, this study proposed correlations which considered the effect of inner structures such as columns, ducts and equipments at the lower plenum on pressure losses. In order to test the accuracy of these correlations, we compared air flow patterns before regulating the opening ratio of access floor with those after regulating. Results after regulating the opening ratio of access floor show good unidirectional uniform airflow pattern. So the present method can be used as an important tool to control the air flow in a cleanroom.

Site effect microzonation of Babol, Iran

  • Tavakoli, H.R.;Amiri, M. Talebzade;Abdollahzade, G.;Janalizade, A.
    • Geomechanics and Engineering
    • /
    • 제11권6호
    • /
    • pp.821-845
    • /
    • 2016
  • Extensive researches on distribution of earthquake induced damages in different regions have shown that geological and geotechnical conditions of the local soils significantly influence behavior of alluvial areas under seismic loading. In this article, the site of Babol city which is formed up of saturated fine alluvial soils is considered as a case study. In order to reduce the uncertainties associated with earthquake resistant design of structures in this area (Babol city), the required design parameters have been evaluated with consideration of site's dynamic effects. The utilized methodology combines experimental ground ambient noise analysis, expressed in terms of horizontal to vertical (H/V) spectral ratio, with numerical one-dimensional response analysis of soil columns using DEEPSOIL software. The H/V spectral analysis was performed at 60 points, experimentally, for the region in order to estimate both the fundamental period and its corresponding amplification for the ground vibration. The investigation resulted in amplification ratios that were greater than one in all areas. A good agreement between the proposed ranges of natural periods and alluvial amplification ratios obtained through the analytical model and the experimental microtremor studies verifies the analytical model to provide a good engineering reflection of the subterraneous alluviums.

Empirical numerical model of tornadic flow fields and load effects

  • Kim, Yong Chul;Tamura, Yukio
    • Wind and Structures
    • /
    • 제32권4호
    • /
    • pp.371-391
    • /
    • 2021
  • Tornadoes are the most devastating meteorological natural hazards. Many empirical and theoretical numerical models of tornado vortex have been proposed, because it is difficult to carry out direct measurements of tornado velocity components. However, most of existing numerical models fail to explain the physical structure of tornado vortices. The present paper proposes a new empirical numerical model for a tornado vortex, and its load effects on a low-rise and a tall building are calculated and compared with those for existing numerical models. The velocity components of the proposed model show clear variations with radius and height, showing good agreement with the results of field measurements, wind tunnel experiments and computational fluid dynamics. Normal stresses in the columns of a low-rise building obtained from the proposed model show intermediate values when compared with those obtained from existing numerical models. Local forces on a tall building show clear variation with height and the largest local forces show similar values to most existing numerical models. Local forces increase with increasing turbulence intensity and are found to depend mainly on reference velocity Uref and moving velocity Umov. However, they collapse to one curve for the same normalized velocity Uref / Umov. The effects of reference radius and reference height are found to be small. Resultant fluctuating force of generalized forces obtained from the modified Rankine model is considered to be larger than those obtained from the proposed model. Fluctuating force increases as the integral length scale increases for the modified Rankine model, while they remain almost constant regardless of the integral length scale for the proposed model.

Effect of connection modeling on the seismic response of steel braced non-moment resisting frames

  • Bagheri, Saman;Tabrizi, Navid Vafi
    • Structural Engineering and Mechanics
    • /
    • 제68권5호
    • /
    • pp.591-601
    • /
    • 2018
  • Non-moment beam-to-column connections, which are usually referred to as simple or shear connections, are typically designed to carry only gravity loads in the form of vertical shears. Although in the analysis of structures these connections are usually assumed to be pinned, they may provide a small amount of rotational stiffness due to the typical connection details. This paper investigates the effects of this small rotational restraint of simple beam-to-column connections on the behavior and seismic response of steel braced non-moment resisting frames. Two types of commonly used simple connections with bolted angles, i.e., the Double Web angle Connection (DWC) and Unstiffened Seat angle Connection (USC) are considered for this purpose. In addition to the pinned condition - as a simplified representation of these connections - more accurate semi-rigid models are established and then applied to some frame models subjected to nonlinear pushover and nonlinear time history analyses. Although the use of bracing elements generally reduces the sensitivity of the global structural response to the behavior of connections, the obtained results indicate considerable effects on the local responses. Namely, our results show that consideration of the real behavior of connections is essential in designing the column elements where the pin-connection assumption significantly underestimates design of outer columns of upper stories.

Investigation of performance of steel plate shear walls with partial plate-column connection (SPSW-PC)

  • Azandariani, Mojtaba Gorji;Gholhaki, Majid;Kafi, Mohammad Ali;Zirakian, Tadeh;Khan, Afrasyab;Abdolmaleki, Hamid;Shojaeifar, Hamid
    • Steel and Composite Structures
    • /
    • 제39권1호
    • /
    • pp.109-123
    • /
    • 2021
  • This research endeavor intends to use the implicit finite element method to investigate the structural response of steel shear walls with partial plate-column connection. To this end, comprehensive verification studies are initially performed by comparing the numerical predictions with several reported experimental results in order to demonstrate the reliability and accuracy of the implicit analysis method. Comparison is made between the hysteresis curves, failure modes, and base shear capacities predicted numerically using ABAQUS software and obtained/observed experimentally. Following the validation of the finite element analysis approach, the effects of partial plate-column connection on the strength and stiffness performances of steel shear wall systems with different web-plate slenderness and aspect ratios under monotonic loading are investigated through a parametric study. While removal of the connection between the web-plate and columns can be beneficial by decreasing the overall system demand on the vertical boundary members, based on the results and findings of this study such detachment can lower the stiffness and strength capacities of steel shear walls by about 25%, on average.

코어 위치 변화에 따른 비틀림 초고층 구조물의 동적응답분석 (Dynamic Response Analysis of Twisted High-Rise Structures according to the Core Location Change)

  • 채영원;김현수;강주원
    • 한국공간구조학회논문집
    • /
    • 제22권1호
    • /
    • pp.17-24
    • /
    • 2022
  • Currently, the construction trend of high-rise structures is changing from a cube-shaped box to a free-form. In the case of free-form structures, it is difficult to predict the behavior of the structure because it induces torsional deformation due to inclined columns and the eccentricity of the structure by the horizontal load. For this reason, it is essential to review the stability by considering the design variables at the design stage. In this paper, the position of the weak vertical member was analyzed by analyzing the behavior of the structure according to the change in the core position of the twisted high-rise structures. In the case of the shear wall, the shear force was found to be high in the order of proximity to the center of gravity of each floor of the structure. In the case of the column, the component force was generated by the axial force of the outermost beam, so the bending moment was concentrated on the inner column with no inclination.