• Title/Summary/Keyword: vertical columns

Search Result 249, Processing Time 0.028 seconds

Perforated TWCF steel beam-columns: European design alternatives

  • Baldassino, Nadia;Bernardi, Martina;Bernuzzi, Claudio;Simoncelli, Marco
    • Steel and Composite Structures
    • /
    • v.35 no.5
    • /
    • pp.701-715
    • /
    • 2020
  • Steel storage racks are lightweight structures, made of thin-walled cold-formed members, whose behaviour is remarkably influenced by local, distortional and overall buckling phenomena, frequently mutually combined. In addition, the need of an easy and rapid erection and reconfiguration of the skeleton frame usually entails the presence of regular perforations along the length of the vertical elements (uprights). Holes and slots strongly influence their behaviour, whose prediction is however of paramount importance to guarantee an efficient design and a safe use of racks. This paper focuses on the behaviour of isolated uprights subjected to both axial load and bending moments, differing for the cross-section geometry and for the regular perforation systems. According to the European standards for routine design, four alternatives to evaluate the bending moment-axial load resisting domains are shortly discussed and critically compared in terms of member load carrying capacity.

Prediction of deflection of high strength steel fiber reinforced concrete beams and columns

  • Kara, Ilker Fatih;Dundar, Cengiz
    • Computers and Concrete
    • /
    • v.9 no.2
    • /
    • pp.133-151
    • /
    • 2012
  • This paper presents an analytical procedure for the analysis of high strength steel fiber reinforced concrete members considering the cracking effect in the serviceability loading range. Modifications to a previously proposed formula for the effective moment of inertia are presented. Shear deformation effect is also taken into account in the analysis, and the variation of shear stiffness in the cracked regions of members has been considered by reduced shear stiffness model. The effect of steel fibers on the behavior of reinforced concrete members have been investigated by the developed computer program based on the aforementioned procedure. The inclusion of steel fibers into high strength concrete beams and columns enhances the effective moment of inertia and consequently reduces the deflection reinforced concrete members. The contribution of the shear deformation to the total vertical deflection of the beams is found to be lower for beams with fibers than that of beams with no fibers. Verification of the proposed procedure has been confirmed from series of reinforced concrete beam and column tests available in the literature. The analytical procedure can provide an accurate and efficient prediction of deflections of high strength steel fiber reinforced concrete members due to cracking under service loads. This procedure also forms the basis for the three dimensional analysis of frames with steel fiber reinforced concrete members.

Seismic response of EB-frames with inverted Y-scheme: TPMC versus eurocode provisions

  • Montuori, R.;Nastri, E.;Piluso, V.
    • Earthquakes and Structures
    • /
    • v.8 no.5
    • /
    • pp.1191-1214
    • /
    • 2015
  • The Theory of Plastic Mechanism Control (TPMC) has been recently extended to the case of Eccentrically Braced Frames (EBFs) with inverted Y-scheme, i.e., EBFs with vertical links. In this paper a further validation of the design procedure, based on TPMC, is provided by means of Incremental Dynamic Analyses (IDA) pointing out the fulfilment of the design goal, i.e., the development of a pattern of yielding consistent with the collapse mechanism of global type where all the links are yielded and all the beams are yielded at their ends while all the columns and the diagonal braces remain in elastic range with the only exception of the base sections of first storey columns. In particular, a study case is designed according to both TPMC and Eurocode 8 provisions and the corresponding seismic performances are investigated by both push-over and IDA analyses. The results show the different performances obtained in terms of pattern of yielding, maximum interstorey drift, link plastic rotation demand and sharing of the seismic base shear between the moment-resisting part and the bracing part of the structural system. The seismic performance improvement obtained by means of TPMC, compared to Eurocode 8 provisions, is pointed out.

Seismic tests of RC shear walls confined with high-strength rectangular spiral reinforcement

  • Zhao, Huajing;Li, Qingning;Song, Can;Jiang, Haotian;Zhao, Jun
    • Steel and Composite Structures
    • /
    • v.24 no.1
    • /
    • pp.1-13
    • /
    • 2017
  • In order to improve the deformation capacity of the high-strength concrete shear wall, five high-strength concrete shear wall specimens confined with high-strength rectangular spiral reinforcement (HRSR) possessing different parameters, were designed in this paper. One specimen was only adopted high-strength rectangular spiral hoops in embedded columns, the rest of the four specimens were used high-strength rectangular spiral hoops in embedded columns, and high-strength spiral horizontal distribution reinforcement were used in the wall body. Pseudo-static test were carried out on high-strength concrete shear wall specimens confined with HRSR, to study the influence of the factors of longitudinal reinforcement ratio, hoop reinforcement form and the spiral stirrups outer the wall on the failure modes, failure mechanism, ductility, hysteresis characteristics, stiffness degradation and energy dissipation capacity of the shear wall. Results showed that using HRSR as hoops and transverse reinforcements could restrain concrete, slow load carrying capacity degeneration, improve the load carrying capacity and ductility of shear walls; under the vertical force, seismic performance of the RC shear wall with high axial compression ratio can be significantly improved through plastic hinge area or the whole body of the shear wall equipped with outer HRSR.

Concrete columns reinforced with Zinc Oxide nanoparticles subjected to electric field: buckling analysis

  • Arbabi, Amir;Kolahchi, Reza;Bidgoli, Mahmood Rabani
    • Wind and Structures
    • /
    • v.24 no.5
    • /
    • pp.431-446
    • /
    • 2017
  • As concrete is most usable material in construction industry it's been required to improve its quality. Nowadays, nanotechnology offers the possibility of great advances in construction. In this study, buckling of horizontal concrete columns reinforced with Zinc Oxide (ZnO) nanoparticles is analyzed. Due to the presence of ZnO nanoparticles which have piezoelectric properties, the structure is subjected to electric field for intelligent control. The Column is located in foundation with vertical springs and shear modulus constants. Sinusoidal shear deformation beam theory (SSDBT) is applied to model the structure mathematically. Micro-electro-mechanic model is utilized for obtaining the equivalent properties of system. Using the nonlinear stress-strain relation, energy method and Hamilton's principal, the motion equations are derived. The buckling load of the column is calculated by Difference quadrature method (DQM). The aim of this study is presenting a mathematical model to obtain the buckling load of structure as well as investigating the effect of nanotechnology and electric filed on the buckling behavior of structure. The results indicate that the negative external voltage applied to the structure, increases the stiffness and the buckling load of column. In addition, reinforcing the structure by ZnO nanoparticles, the buckling load of column is increased.

Structural Behaviour of the Wing Wall with Columns (날개벽이 있는 기둥의 구조적 거동 특성)

  • Kang, Young-Woong;Yang, Won-Jik;Kang, Dae-Eon;Yi, Waon-Ho;Song, Dong-Yup
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.73-74
    • /
    • 2009
  • Current buildings have complex shaped walls where the wing wall system is a popular option. When the wing wall is attached to a column, or a short span is produced due to the wing wall system, the system affects the behaviour of the column such as by increasing the strength and decreasing the ductility of the members. Calculations for internal shear force and internal bending moment of the vertical members are considered an important matter in design, but currently Korea does not have studies on the effects of the wing wall on the columns.

  • PDF

Experimental Study On Seismic Behavior Of Masonry Walls With Column (기둥 및 벽체가 보강된 조적벽체의 지진거동에 대한 실험적 연구)

  • Kikuchi, Kenji;Park, Kang-Geun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.2 s.20
    • /
    • pp.93-105
    • /
    • 2006
  • In order to investigate the effect of the height of application point of lateral loads and reinforcing steel bars in walls and columns in improving the seismic behavior of confined concrete block masonry walls, an experimental research program is conducted. A total of twelve one-half scale specimens are tested under repeated lateral loads. Specimens are tested to failure with increasing maximum lateral drifts while a vertical axial load was applied and maintained constant. The specimens adopted are two-dimensional (2D) hollow concrete block masonry walls with different parameters such as shear span ratio, inflection point and percent of reinforcement in confining columns and walls. Test results obtained for each specimen include cracking patterns, load-deflection curve, and strains in reinforcement and walls in critical locations. Analysis of test data showed that above parameters generate a considerable effect on the seismic performance of confined concrete block masonry walls.

  • PDF

Application of Pile Net Method to restrain the Soft Ground settlement in Concrete Track (콘크리트궤도 침하억제를 위한 파일네트공법 적용성 검토)

  • Lee, Il-Wha;Lee, Sung-Jin;Lee, Su-Hyung;Bang, Eui-Seok;Jung, Jang-Yong
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1695-1704
    • /
    • 2008
  • The problems associated with constructing high-speed concrete track embankments over soft compressible soil has lead to the development and/or extensive use of many of the ground improvement techniques used today. Drains, surcharge loading, and geosynthetic reinforcement, have all been used to solve the settlement and embankment stability issues associated with construction on soft soils. However, when time constraints are critical to the success of the project, owners have resorted to another innovative approach. Especially, the design criteria of residual settlement is limited as 30mm for concrete track embankment, it is very difficult to satisfy this standard using the former construction method. Pile net method consist of vertical columns that are designed to transfer the load of the embankment through the soft compressible soil layer to a firm foundation and one or more layers of geosynthetic reinforcement placed between the top of the columns and the bottom of the embankment. This paper will present the guidelines for the design of pile net method to supported embankments. These guidelines were developed based on a review of current design methodologies and a parametric study of design variables using numerical modeling.

  • PDF

An Analytical Evaluation of 2D Mesh-connected SIMD Architecture for Parallel Matrix Multiplication (2D Mesh SIMD 구조에서의 병렬 행렬 곱셈의 수치적 성능 분석)

  • Kim, Cheong-Ghil
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.10 no.1
    • /
    • pp.7-13
    • /
    • 2011
  • Matrix multiplication is a fundamental operation of linear algebra and arises in many areas of science and engineering. This paper introduces an efficient parallel matrix multiplication scheme on N ${\times}$ N mesh-connected SIMD array processor, called multiple hierarchical SIMD architecture (HMSA). The architectural characteristic of HMSA is the hierarchically structured control units which consist of a global control unit, N local control units configured diagonally, and $N^2$ processing elements (PEs) arranged in an N ${\times}$ N array. PEs are communicating through local buses connecting four adjacent neighbor PEs in mesh-torus networks and global buses running across the rows and columns called horizontal buses and vertical buses, respectively. This architecture enables HMSA to have the features of diagonally indexed concurrent broadcast and the accessibility to either rows (row control mode) or columns (column control mode) of 2D array PEs alternately. An algorithmic mapping method is used for performance evaluation by mapping matrix multiplication on the proposed architecture. The asymptotic time complexities of them are evaluated and the result shows that paralle matrix multiplication on HMSA can provide significant performance improvement.

  • PDF

A consistent FEM-Vlasov model for hyperbolic cooling towers on layered soil under unsymmetrical wind load

  • Karakas, Ali I.;Ozgan, Korhan;Daloglu, Ayse T.
    • Wind and Structures
    • /
    • v.22 no.6
    • /
    • pp.617-633
    • /
    • 2016
  • In this paper, the analysis of hyperbolic cooling tower on elastic subsoil exposed to unsymmetrical wind loading is presented. Modified Vlasov foundation model is used to determine the soil parameters as a function of vertical deformation profile within subsoil. The iterative parameter updating procedure involves the use of Open Application Programming Interface (OAPI) feature of SAP2000 to provide two way data flow during execution. A computing tool coded in MATLAB employing OAPI is used to perform the analysis of hyperbolic cooling tower with supporting columns over a hollow annular raft founded on elastic subsoil. The analysis of such complex soil-structure system is investigated under self-weight and unsymmetrical wind load. The response of the cooling tower on elastic subsoil is compared with that of a tower that its supporting raft foundation is treated as fixed at the base. The results show that the effect of subsoil on the behavior of cooling tower is considerable at the top and bottom of the wall as well as supporting columns and raft foundation. The application of a full-size cooling tower has demonstrated that the procedure is simple, fast and can easily be implemented in practice.