• Title/Summary/Keyword: vertical channel

Search Result 467, Processing Time 0.029 seconds

Convective Heat Transfer in a Channel with Isothermal Rectangular Beams (등온사각빔이 부착된 채널에서의 대류열전달)

  • Ree, J.S.;Kwon, S.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.1
    • /
    • pp.63-72
    • /
    • 1995
  • Convective heat transfer in a two-dimensional horizontal and vertical channel with isothermal rectangular beams attached to one adiabatic wall is investigated from the numerical solution of Navier-Stokes and energy equations. The solutions have been obtained for dimensionless beam spacings, S/L=1~4, aspect ratios of beam, H/B=0.25~4, Reynolds numbers, Re=50~1000 and Grashof numbers, $Gr=0{\sim}5{\times}10^4$. The total mean Nusselt number, Nu_T for horizontal and vertical channels shows same value at Gr=0. As Gr increases, Nu_T for horizontal channel increases, but Nu_T for vertical channel shows similar value at S/L=2, H/B=0.25, Re=100. The total mean Nusselt number for horizontal channel is higher than that for vertical channel. As H/B increases, $Nu_T$ for both channel decrease at $Gr=10^4$, Re=100.

  • PDF

Natural Cconvection in a Vertical Channel with Thermal Blocks (장방형 발열체가 부착된 채널에서 자연대류 연구)

  • 최용문;박경암
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.2
    • /
    • pp.438-444
    • /
    • 1993
  • The circuit board of an electronic equipment were simulated with a vertical channel which had thermal blocks protruded from one of the channel walls. A rought front plate was made of a circuit board attached with short wires to simulate the back side of a printed circuit board. Natural convection experiments were carried out to study the effects of channel space and rough front plate and to find the suitable characteristic value after the fourth row. The effect of a rough front plate was negligble. There were negligible effects of the channel space on the first and second heaters. Heat transfer coefficients after the third row decreased as the channel space decreased. Heat transfer coefficients were almost constant for larger than 20 mm channel space. A characteristic length was suggested to non-dimensionalize Nu and Ra numbers in a vertical channel with protruded heaters. A correlation was obtained using the new characteristic lengths.

State-Space Representation of Complementary Filter and Design of GPS/INS Vertical Channel Damping Loop (보완 필터의 상태 공간 표현식 유도 및 GPS/INS 수직채널 감쇄 루프 설계)

  • Park, Hae-Rhee
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.8
    • /
    • pp.727-732
    • /
    • 2008
  • In this paper, the state-space representation of generalized complimentary filter is proposed. Complementary filter has the suitable structure to merge information from sensors whose frequency regions are complementary. First, the basic concept and structure of complementary filter is introduced. And then the structure of the generalized filter and its state-space representation are proposed. The state-space representation of complementary filter is able to design the complementary filter by applying modern filtering techniques like Kalman filter and $H_{\infty}$ filter. To show the usability of the proposed state-space representation, the design of Inertial Navigation System(INS) vertical channel damping loop using Global Positioning System(GPS) is described. The proposed GPS/INS damping loop lends the structure of Baro/INS(Barometer/INS) vertical channel damping loop that is an application of complementary filter. GPS altitude error has the non-stationary statistics although GPS offers navigation information which is insensitive to time and place. Therefore, $H_{\infty}$ filtering technique is selected for adding robustness to the loop. First, the state-space representation of GPS/INS damping loop is acquired. And next the weighted $H_{\infty}$ norm proposed in order to suitably consider characteristics of sensor errors is used for getting filter gains. Simulation results show that the proposed filter provides better performance than the conventional vertical channel loop design schemes even when error statistics are unknown.

STUDY ON HEAT TRANSFER CHARACTERISTICS OF THE ONE SIDE-HEATED VERTICAL CHANNEL WITH INSERTED POROUS MATERIALS APPLIED AS A VESSEL COOLING SYSTEM

  • KURIYAMA, SHINJI;TAKEDA, TETSUAKI;FUNATANI, SHUMPEI
    • Nuclear Engineering and Technology
    • /
    • v.47 no.5
    • /
    • pp.534-545
    • /
    • 2015
  • In the very high temperature reactor (VHTR), which is a next generation nuclear reactor system, ceramics are used as a fuel coating material and graphite is used as a core structural material. Even if a depressurization accident occurs and the reactor power goes up instantly, the temperature of the core will change only slowly. This is because the thermal capacity of the core is so high. Therefore, the VHTR system can passively remove the decay heat of the core by natural convection and radiation from the surface of the reactor pressure vessel. The objectives of this study are to investigate the heat transfer characteristics of natural convection of a one-side heated vertical channel with inserted porous materials of high porosity and also to develop the passive cooling system for the VHTR. An experiment was carried out using a one-side heated vertical rectangular channel. To obtain the heat transfer and fluid flow characteristics of the vertical channel with inserted porous material, we have also carried out a numerical analysis using a commercial Computational Fluid Dynamics (CFD) code. This paper describes the thermal performances of the one-side heated vertical rectangular channel with an inserted copper wire of high porosity.

The Effect Of Stability On The Intensity Of Vertical Turbulent Diffusion In The Western Channel Of The Korea Strait

  • Chung, Jong Yul
    • 한국해양학회지
    • /
    • v.12 no.1
    • /
    • pp.7-12
    • /
    • 1977
  • Vertical mixing in the ocean affects the formation of water masses as well as the vertical distribution of nutrients and dissolved substances. this study is to investigate the effect of stability on the intensity of vertical transfer in the case of shallow and straitfied channel. It is found that the relation of the stability and vertical turbulent diffusion is given by K$\sub$z/ = -${\beta}$-(c+${\beta}$) / ${\alpha}$(E-1/${\alpha}$) where K$\sub$z/ and E denotes the vertical turbulent diffusion coefficient and stability, respectively. The empirical coefficients ${\alpha}$, ${\beta}$ and c depend on the magnitude of vertical components and stability, i.e., through thermocline intensity. The study indicates that the diffusivity of the surface mixed layer is (K$\sub$z/)=300∼1,200$\textrm{cm}^2$/sec, the thermocline layer is (K$\sub$z/)= 50∼200$\textrm{cm}^2$/sec and the cold layer is (K$\sub$z/)=200∼600$\textrm{cm}^2$/sec based on near- minimum least-squares error estimates from the regression analysis. An important result of our study comes out that the model is in accordance with the general trends of the effect of stability on the vertical turbulent diffusion coefficients in the case of shallow and strongly stratified channel.

  • PDF

Study of Stokes Flow Past a Vertical Plate in a Two-Dimensional Channel (2차원 채널 내의 수직 평판을 지나는 스톡스 유동에 대한 연구)

  • Yoon, Seok-Hyun;Jeong, Jae-Tack
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.6
    • /
    • pp.609-615
    • /
    • 2011
  • A two-dimensional Stokes flow past a vertical plate in a channel is analyzed. The vertical plate is located at the center of the channel, and plane Poiseuille flow exists far upstream and downstream of the vertical plate. The Stokes approximation is used, and the flow is investigated analytically using the method of eigenfunction expansion and the point collocation method. From the analysis, the stream function and pressure distribution are obtained, and the pressure and shear stress distributions on the plate and channel wall are calculated. The additional pressure drop induced by the vertical plate and the force exerted on it are calculated as functions of the length of the vertical plate. For a typical length of the vertical plate, the streamline pattern and pressure distribution are shown. In addition, numerical analysis of laminar flow with a small Reynolds number is carried out to analyze the effect of a small Reynolds number on the flow pattern.

The Vertical Distribution of Longitudinal Velocity in Sharp Open Channel Bends (급변만곡부에서 종방향 유속의 연직분포)

  • Lee, Kil-Seong;Kim, Tae-Won;Park, Jae-Hyeon
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.12 s.173
    • /
    • pp.1023-1030
    • /
    • 2006
  • The characteristics of the longitudinal velocity in a $180^{\circ}$ constant-radius, recirculating laboratory channel were investigated. Three-dimensional velocity fields were measured using a side-looking ADV. The shortcomings of existing equations for longitudinal velocity are discussed. An eddy viscosity model is adopted in the downstream momentum equation. A mathematical equation was developed to describe the vertical distribution of longitudinal velocity. The comparisons of the longitudinal velocity show generally good agreement. It is found that the curvature change in the curved channel affects the vertical location of maximum velocity and the vertical profile of longitudinal velocity.

Flow regime transition criteria for vertical downward two-phase flow in rectangular channel

  • Chalgeri, Vikrant Siddharudh;Jeong, Ji Hwan
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.546-553
    • /
    • 2022
  • Narrow rectangular channels are employed in nuclear research reactors that use plate-type nuclear fuels, high heat-flux compact heat exchangers, and high-performance micro-electronics cooling systems. Two-phase flow in narrow rectangular channels is important, and it needs to be better understood because it is considerably different than that in round tubes. In this study, mechanistic models were developed for the flow regime transition criteria for various flow regimes in co-current air-water two-phase flow for vertical downward flow inside a narrow rectangular channel. The newly developed criteria were compared to a flow regime map of downward air-water two-phase flow inside a narrow rectangular channel with a 2.35-mm gap width under ambient temperature and pressure conditions. Overall, the proposed model showed good agreement with the experimental data.

Reflood Experiments with Horizontal and Vertical Flow Channels

  • Chung, Moon-Ki;Lee, Seung-Hyuck;Park, Choon-Kyung;Lee, Young-Whan
    • Nuclear Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.153-162
    • /
    • 1980
  • The investigation of the fuel cladding temperature behavior and heat transfer mechanism during the reflooding phase of a LOCA plays an important role in performance evaluation of ECCS and safety analysis of water reactors. Reflooding experiments were performed with horizontal and vertical flow channels to investigate the effect of coolant flow channel orientation on rewetting process. Emphasis was mainly placed on the CANDU reactor which has horizontal pressure tubes in core, and the results were compared with those of vertical channel. Also to investigate the rewetting process visually, the experiments by using a rod in annulus and a quartz tube heated outside were performed. It can be concluded that the rewetting velocity in horizontal flow channel is clearly affected by flow stratification, however, the average rewetting velocity is similar to those in vertical flow channel for same conditions.

  • PDF

The Effects of Alternative Channel Integration Structures on the Channel Performance: An Implication for Export Channel Strategy (유통경로 지배구조 유형과 유통성과 간의 관계에 관한 실증적 연구: 수출유통구조 전략에 관한 시사점)

  • Kim, Kyu-Dong
    • International Commerce and Information Review
    • /
    • v.14 no.2
    • /
    • pp.81-119
    • /
    • 2012
  • In order to maintain high level of control over and close coordination of foreign marketing activities, export manufacturers often consider vertical integration strategy into global distribution. However, full integration is not always a feasible option. The purpose of this study is to investigate the alternative ways to achieve optimal level of control over export channel system for desirable channel performance. This study investigates different options for integration of the vertical channel structure, and examines their effect on the performance. The findings of this study suggest different combination of ownership and coordination level has varying impact upon channel performance: efficiency, effectiveness, and adaptiveness. This implies exporters may achieve desirable performance control over export channel without fully integrating the channel via ownership.

  • PDF