• Title/Summary/Keyword: ventricular myocytes

Search Result 69, Processing Time 0.028 seconds

Protein Kinase C Activates ATP-sensitive Potassium Channels in Rabbit Ventricular Myocytes

  • Kim, Na-Ri;Youm, Jae-Boum;Joo, Hyun;Kim, Hyung-Kyu;Kim, Eui-Yong;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.4
    • /
    • pp.187-193
    • /
    • 2005
  • Several signal transduction pathways have been implicated in ischemic preconditioning induced by the activation of ATP-sensitive $K^+$ $(K_{ATP})$ channels. We examined whether protein kinase C (PKC) modulated the activity of $K_{ATP}$ channels by recording $K_{ATP}$ channel currents in rabbit ventricular myocytes using patch-clamp technique and found that phorbol 12,13-didecanoate (PDD) enhanced pinacidil-induced $K_{ATP}$ channel activity in the cell-attached configuration; and this effect was prevented by bisindolylmaleimide (BIM). $K_{ATP}$ channel activity was not increased by $4{\alpha}-PDD$. In excised insideout patches, PKC stimulated $K_{ATP}$ channels in the presence of 1 mM ATP, and this effect was abolished in the presence of BIM. Heat-inactivated PKC had no effect on channel activity. PKC-induced activation of $K_{ATP}$ channels was reversed by PP2A, and this effect was not detected in the presence of okadaic acid. These results suggest that PKC activates $K_{ATP}$ channels in rabbit ventricular myocytes.

Modulation of Calcium Current by Cyclic GMP in the Single Ventricular Myocytes of the Rabbit (토끼 단일 심실근 세포에서 cyclic GMP의 $Ca^{2+}$ 전류 조절기전에 관한 연구)

  • An, Jae-Ho;Seo, Gyeong-Pil;Eom, Yung-Ui
    • Journal of Chest Surgery
    • /
    • v.25 no.4
    • /
    • pp.364-382
    • /
    • 1992
  • In order to investigate the effect of intracellular cyclic GMP on the calcium channel, whole cell patch clamp technique with internal perfusion method was used in the single ventricular myocytes of the rabbit. Cyclic GMP, cGMP analogues, cAMP, isopernaline and forskolin were perfused into cells and their effects on the calcium current were analysed by applying depolarizing step pulse of 10 mV in amplitude for 200 msec from holding potential of -40 mV. Calcium currents usually activated from -30 mV and then reached a peak at +10 mV. Amplitude of the calcium current was standardized with membrane capacitance, 50 pF. Peak amplitude at +10 mV in control was -0.15 nA/50pF. When 100 mM cAMP was applied from the pipette, peak amplitude of calcium current increased to -0.32 nA and addition of 1 mM isoprenaline further increased its amplitude. In the presence of cGMP it alone also produced an increase of the calcium current to -0.52 nA/50pF and addition of isoprenaline or forskolin increased its magnitude to -[0.55~0.95] nA/50pF. Simultaneous application of cGMP and cAMP increased the calcium current to -0.67 nA/50pF. Among the cGMP analogues, 8-Br-cGMP was the most potent stimulant for the calcium current activation. From the above results it could be concluded tlat cGMP increases the calcium current not through cAMP dependent protein kinase nor cAMP dependent phosphodiesterase pathway, but through independent phosphorylation pathway, possibly cGMP dependent protein kinase pathway.

  • PDF

Activation of ATP-sensitive Potassium Channels by the Predominant Metabolite of Isoflurane in Rabbit Ventricular Myocytes

  • Han, Jin;Kim, Na-Ri;Kim, Eui-Yong;Kim, Sung-Ju;Cho, Kang-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.2
    • /
    • pp.165-175
    • /
    • 2001
  • Background: Recent in vivo experimental evidence suggests that isoflurane-induced cardioprotection may involve $K_{ATP}$ channel activation. However, it was demonstrated that isoflurane inhibited $K_{ATP}$ channel activities in the inside-out patch mode. To explain this discrepancy, the present investigation tested the hypothesis that a metabolite of isoflurane, trifluoroacetic acid (TFA), contributes to isoflurnae-induced cardioprotection via $K_{ATP}$ channel activation during myocardial ischemia and reperfusion. Methods: Single ventricular myocytes were isolated from rabbit hearts by an enzymatic dissociation procedure. Patch-clamp techniques were used to record single-channel currents. $K_{ATP}$ channel activities were assessed before and after the application of TFA with the inside-out patch mode. Results: TFA enhanced channel activity in a concentration-dependent fashion. The concentration of TFA for half-maximal activation and the Hill coefficient were 0.03 mM and 1.2, respectively. TFA did not affect the single channel conductance of $K_{ATP}$ channels. Analysis of open and closed time distributions showed that TFA increased burst duration and decreased the interburst interval without changes in open and closed time distributions shorter than 5 ms. TFA diminished ATP sensitivity of $K_{ATP}$ channels in a concentration-response relationship for ATP. Conclusions: TFA, a metabolite of isoflurane, enhanced $K_{ATP}$ channel activity in a concentration-dependent fashion. These results imply that TFA could mediate isoflurane-induced cardioprotection via $K_{ATP}$ channel activation during myocardial ischemia and reperfusion.

  • PDF

Regulation of Magnesium Release by cAMP during Chemical Hypoxia in the Rat Heart and Isolated Ventricular Myocytes

  • Kim, Jin-Shang;Scarpa, Antonio
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.1
    • /
    • pp.59-68
    • /
    • 1999
  • Chemically induced hypoxia has been shown to induce a depletion of ATP. Since intracellular free $Mg^{2+}\;([Mg^{2+}]_i)$ appears to be tightly regulated following cellular energy depletion, we hypothesized that the increase in $[Mg^{2+}]_i$ would result in $Mg^{2+}$ extrusion following hormonal stimulation. To determine the relation between $Mg^{2+}$ efflux and cellular energy state in a hypoxic rat heart and isolated myocytes, $[Mg^{2+}]_i,$ ATP and $Mg^{2+}$ content were measured by using mag-fura-2, luciferin-luciferase and atomic absorbance spectrophotometry. $Mg^{2+}$ effluxes were stimulated by norepinephrine (NE) or cAMP analogues, respectively. $Mg^{2+}$ effluxes induced by NE or cAMP were more stimulated in the presence of metabolic inhibitors (MI). Chemical hypoxia with NaCN (2 mM) caused a rapid decrease of cellular ATP within 1 min. Measurement of $[Mg^{2+}]_i$ confirmed that ATP depletion was accompanied by an increase in $[Mg^{2+}]_i.$ No change in $Mg^{2+}$ efflux was observed when cells were incubated with MI. In the presence of MI, the cAMP-induced $Mg^{2+}$ effluxes were inhibited by quinidine, imipramine, and removal of extracellular $Na^+.$ In addition, after several min of perfusion with $Na^+-free$ buffer, a large increase in $Mg^{2+}$ efflux occurred when $Na^+-free$ buffer was switched to 120 mM $Na^+$ containing buffer. A similar $Mg^{2+}$ efflux was observed in myocytes. These effluxes were inhibited by quinidine and imipramine. These results indicate that the activation of $Mg^{2+}$ effluxes by hormonal stimulation is directly dependent on intracellular $Mg^{2+}$ contents and that these $Mg^{2+}$ effluxes appear to occur through the $Na^+-dependent\;Na^+/Mg^{2+}$ exchange system during chemical hypoxia.

  • PDF

A Computational Model of Cytosolic and Mitochondrial [$Ca^{2+}$] in Paced Rat Ventricular Myocytes

  • Youm, Jae-Boum;Choi, Seong-Woo;Jang, Chang-Han;Kim, Hyoung-Kyu;Leem, Chae-Hun;Kim, Na-Ri;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.4
    • /
    • pp.217-239
    • /
    • 2011
  • We carried out a series of experiment demonstrating the role of mitochondria in the cytosolic and mitochondrial $Ca^{2+}$ transients and compared the results with those from computer simulation. In rat ventricular myocytes, increasing the rate of stimulation (1~3 Hz) made both the diastolic and systolic [$Ca^{2+}]$ bigger in mitochondria as well as in cytosol. As L-type $Ca^{2+}$ channel has key influence on the amplitude of $Ca^{2+}$ -induced $Ca^{2+}$ release, the relation between stimulus frequency and the amplitude of $Ca^{2+}$ transients was examined under the low density (1/10 of control) of L-type $Ca^{2+}$ channel in model simulation, where the relation was reversed. In experiment, block of $Ca^{2+}$ uniporter on mitochondrial inner membrane significantly reduced the amplitude of mitochondrial $Ca^{2+}$ transients, while it failed to affect the cytosolic $Ca^{2+}$ transients. In computer simulation, the amplitude of cytosolic $Ca^{2+}$ transients was not affected by removal of $Ca^{2+}$ uniporter. The application of carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP) known as a protonophore on mitochondrial membrane to rat ventricular myocytes gradually increased the diastolic [$Ca^{2+}$] in cytosol and eventually abolished the $Ca^{2+}$ transients, which was similarly reproduced in computer simulation. The model study suggests that the relative contribution of L-type $Ca^{2+}$ channel to total transsarcolemmal $Ca^{2+}$ flux could determine whether the cytosolic $Ca^{2+}$ transients become bigger or smaller with higher stimulus frequency. The present study also suggests that cytosolic $Ca^{2+}$ affects mitochondrial $Ca^{2+}$ in a beat-to-beat manner, however, removal of $Ca^{2+}$ influx mechanism into mitochondria does not affect the amplitude of cytosolic $Ca^{2+}$ transients.

Effects of phenylephrine-induced PKC activation on Mg2+ release in guinea pig heart and isolated ventricular myocytes (기니픽 심장과 심근세포에서 Phenylephrine에 의한 PKC 활성화가 Mg2+ 유리에 미치는 영향)

  • Chang, Sung-eun;Kang, Hyung-sub;Kim, Jin-sang
    • Korean Journal of Veterinary Research
    • /
    • v.38 no.1
    • /
    • pp.29-42
    • /
    • 1998
  • $Mg^{2+}$ is one of the most abundant divalent cations in mammalian body(0.2~1.0mM) and the important physiological roles are : first, the cofactor of many enzyme activities, second, the regulator of glycolysis and DNA synthesis, third, the important role of bioenergetics by regulating of phosphorylation, fourth, the influence of cardiac metabolism and function. In this work we have investigated the regulation of the $Mg^{2+}$ induced by ${\alpha}_1-adrenoceptor$ stimulation in perfused guinea pig hearts and isolated myocytes. The $Mg^{2+}$ content of the perfusate or the supernatant was measured by atomic absorbance spectrophotometry. The elimination of $Mg^{2+}$ in the medium increased the force of contraction of right ventricular papillary muscles, and the left ventricular pressure. Phenylephrine also enhanced the force of contraction in the presence of $Mg^{2+}-free$ medium. ${\alpha}_1-Agonists$ such as phenylephrine and methoxamine were found to induce $Mg^{2+}$ efflux in both perfused hearts and myocytes. These effects were blocked by prazosin, an ${\alpha}_1-adrenoceptor$ antagonist. The $Mg^{2+}$ influx could also be induced by phenylephrine and R59022, a diacylglycerol kinase inhibitor. In the presence of protein kinase C(PKC) inhibitors, phenylephrine produced an increase in $Mg^{2+}$ efflux from perfused hearts. Furthermore, $Mg^{2+}$ efflux by phenylephrine was amplified by phorbol 12-myristate 13-acetate(PMA). This enhancement of $Mg^{2+}$ efflux by PMA was blocked by prazosin in perfused hearts. By contrast, the $Mg^{2+}$ influx could be induced by verapamil, nifedipine, ryanodine in perfused hearts, but not in myocytes. $W^7$, a $Ca^{2+}$/calmodulin antagonist, completely blocked the phenylephrine-induced $Mg^{2+}$ efflux in perfused hearts. In conclusion, $Mg^{2+}$ is responsible for the cardiac activity associated with ${\alpha}_1-adrenoceptor$ stimulation. The mobilization of $Mg^{2+}$ is decreased or increased by ${\alpha}_1-adrenoceptor$ stimulation in guinea pig hearts. These responses may be related specifically to the respective pathways of signal transduction. A decrease in $Mg^{2+}$ efflux by ${\alpha}_1-adrenoceptor$ stimulation in hearts can be through PKC dependent and intracellular $Ca^{2+}$ levels.

  • PDF

Depression of L-type $Ca^{2+}$ and Transient Outward $K^+$ Currents in Endotoxin-treated Rat Cardiac

  • Park, Kyu-Sang;Lee, Boo-Soo;Kong, In-Deok;Lee, Joong-Woo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.6
    • /
    • pp.623-630
    • /
    • 1999
  • Decreased cardiac contractility occurs in endotoxicosis, but little is known about the ionic mechanism responsible for myocardial dysfunction. In this study, we examined the changes in $Ca{2+}$ and $K^+$ currents in cardiac myocytes from endotoxin-treated rat. Ventricular myocytes were isolated from normal and endotoxemic rats (ex vivo), that were treated for 10 hours with Salmonella enteritidis lipopolysaccharides (LPS; 1.5 mg/kg) intravenously. Normal cardiac myocytes were also incubated for 6 hours with 200 ng/ml LPS (in vitro). L-type $Ca{2+}$ current $(I_{Ca,L})$ and transient outward $K^+$ current $(I_{to})$ were measured using whole cell patch clamp techniques. Peak $I_{Ca,L}$ was reduced in endotoxemic myocytes (ex vivo; 6.00.4 pA/pF, P<0.01) compared to normal myocytes (control; 10.90.6 pA/pF). Exposure to endotoxin in vitro also attenuated $I_{Ca,L}$ (8.40.4 pA/pF, P<0.01). The amplitude of $(I_{to})$ on depolarization to 60 mV was reduced in endotoxin treated myocytes (16.51.5 pA/pF, P<0.01, ex vivo; 20.00.9 pA/pF, P<0.01 , in vitro) compared to normal myocytes (control; 24.71.0 pA/pF). There was no voltage shift in steady-state inactivation of $I_{Ca,L}$ and $(I_{to})$ between groups. These results suggest that endotoxin reduces $Ca{2+}$ and $K^+$ currents of rat cardiac myocytes, which may lead to cardiac dysfunction.

  • PDF

Regulation of Mg2+ efflux by cAMP in perfused rat heart and isolated ventricular myocytes (흰쥐의 심장과 심근세포에서 cyclic AMP에 의한 Mg2+ 유리조절)

  • Kang, Hyung-sub;Kim, Jin-shang;Kang, Chang-won;Lee, Ho-il
    • Korean Journal of Veterinary Research
    • /
    • v.39 no.1
    • /
    • pp.62-69
    • /
    • 1999
  • Although it has been reported that hormones or chemicals, which increase in intracellular cAMP, produced $Mg^{2+}$ release from the heart, it is not well characterized whether a specific $Mg^{2+}$ exchanger is involved in cAMP-induced $Mg^{2+}$ efflux in the mammalian hearts. In this work, we studied the relationship between the increase in intracellular cAMP and ion transport system on $Mg^{2+}$ regulation in the perfused rat heart and isolated myocytes. The $Mg^{2+}$ content in the perfusate and supernatant were measured by atomic absorption spectrophotometer. The addition of membrane permeable cAMP analogue to the perfused hearts and myocytes induced a $Mg^{2+}$ efflux in the dose dependent manners. $Mg^{2+}$ efflux was stimulated by cAMP modulators (forskolin, IBMX and Ro20-1724) in the perfused hearts and myocytes. cAMP-induced $Mg^{2+}$ efflux was inhibited by $H_7$, benzamil or imipramine in the perfused hearts and myocytes, but not by EIPA. We confirmed that a significant $Mg^{2+}$ efflux was induced by an increase in intracellular cAMP in the hearts and myocytes. The cAMP-induced increase of $Mg^{2+}$ efflux in the hearts may be involved in ion transport system ($Na^+-Ca^{2+}$ and $Na^+-Mg^{2+}$ exchanger).

  • PDF

Chelidonine blocks hKv 1.5 channel current

  • Eun, Jae-Soon;Kim, Dae-Keun;Kwak, Young-Geun
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2003.11a
    • /
    • pp.112-112
    • /
    • 2003
  • Voltage-gated $K^{+}$ (Kv) channels represent a structurally and functionally diverse group of membrane proteins. These channels play an important role in determining the length of the cardiac action potential and are the targets for antiarrhythmic drugs. Many $K^{+}$ channel genes have been cloned from human myocardium and functionally contribute to its electrical activity. One of these channels, Kv1.5, is one of the more cardiovascular-specific $K^{+}$ channel isoforms identified to date and forms the molecular basis for an ultra-rapid delayed rectifier $K^{+}$ current found in human atrium. Thus, the blocker of hKv1.5 is expected to be an ideal antiarrhythmic drug for atrial fibrillation. Chelidonine was isolated from Chelidonium majus L. We examined the effect of chelidonine on the hKv1.5 current expressed in Ltk-cells using whole cell mode of patch clamp techniques. Chelidonine selectively inhibited the hKv1.5 current expressed in Ltk-cells in a concentration-dependent manner, whereas did not affect the HERG current expressed in HEK-293 cells. Additionally, chelidonine reduced the tail current amplitude recorded at -50 mV after 250 ms depolarizing pulses to +60 mV, and slowed the deactivation time course resulting in a 'crossover' phenomenon when the tail currents recorded under control conditions and in the presence of chelidonine were superimposed. We found that chelidonine also inhibited the $K^{+}$ current in isolated human atrial myocytes where hKv1.5 channels were predominantly expressed. Furthermore, we examined the effects of chelidonine on the action potentials in rabbit hearts using conventional microelectrode technique. Chelidonine prolonged the action potential durations (APD) of atrial, ventricular myocytes and Purkinje fibers in a dose-dependent manner. However, the effect of chelidonine on atrial APD was frequency-dependent whereas the effect of chelidonine on the APDs of ventricular myocytes and Purkinje fibers was not frequency- dependent. Also, the selective action of chelidonine on heart was more potent than dofetilide, $K^{+}$ channel blocker.

  • PDF