• Title/Summary/Keyword: ventilation process

Search Result 232, Processing Time 0.023 seconds

A Study of Field Survey on Working Environment for Mercury Treatment Establishments in Korea (전국 수은 취급사업장의 작업환경 실태 조사 연구)

  • 엄성인;백존배;이영섭
    • Journal of the Korean Society of Safety
    • /
    • v.7 no.3
    • /
    • pp.30-34
    • /
    • 1992
  • This study is conducted to evaluate the airborne concentration of mercury, as well as installation and efficiency of local exhaust ventilation system for 57 factories manufactured fluorescence lamps, mercury lamps and thermometers for July and August 1990. Results and conclusion are as fellows : 1) Mercury treatment factories are 32 among 57 ones, which are 18 fluorescence lamp manufacturing ones and 6 mercury lamp ones and 3 thermometer ones and 5 other ones. 2) Mean airborne concentrations of mercury for factories manufactured mercury lamps are 0.01 mg/ ㎥ in injection process and 0.0155mg/㎥ in exhaust process, and mean airborne concentration of mercury for factories manufactured thermometer are 0.023mg/㎥ in injection process and 0.012mg/㎥ in selection process. All of these airborne concentrations of mercury are lower than PEL(Permissible Exposure Limit ), 0.05mg/㎥. 3) Mean airborne concentrations of mercury for factories manufactured fluorescence lamps are 0.094mg/㎥ in injection process and 0.087mg/㎥ in exhaust process, and 0.052mg/㎥ in sealing process and 0.085mg/㎥ in other process, respectively. All of these air borne concentrations of mercury are exceeded to PEL. More than 60% among 32 factories manufactured mercury are exceeded to PEL. 4) Nine factories among 18 factories manufactured fluorestence lamps are equipped with local exhaust ventilation system, and 7 factories among 9 factories are required for the improvement of suction capacity and structure. Five factories among 14 factories manufactured mercury lamps and the other ones are equipped with local exhaust ventilation system, and 2 factories are required for the improvement of suction capacity and structure.

  • PDF

A Study on the Ventilation Method for a Factory with a Sealed Structure

  • Kim, Yeong-Sik;Yi, Chung-Seob;Lee, Dae-Chul;Jeong, Hyo-Min;Chung, Han-Shik
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.159-165
    • /
    • 2014
  • On this work, the importance of industrial ventilation was investigated and examined the theoretical point and problems about general ventilation of factory exposed on high temperature during summer. As a case study, the ventilation planning of the printed circuit board (PCB) etching process for an electronic company was carried out and each of those characteristics were compared by installing actual ventilation systems and measuring the changing state of the working environment in accordance with ventilation method during summer. The purpose of the study is to present an efficient ventilation method for a factory with a closed structure under high temperature environment. In summary, for a factory with a sealed structure such as the target PCB manufacturing factory in this study, the forced supply and exhaust method was the most appropriate ventilation method for maintaining a low.

Development of Automated Modeling System for Air-Ventilation Holes (열 배출구 형상 모델링 자동화 시스템 개발)

  • Park, Hyun-Pung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.5
    • /
    • pp.330-337
    • /
    • 2009
  • Nowadays a lot of high-tech electronic products such as TVs, monitors and camcorders are being developed. The more functions the electronic devices have, the more heat problems occur. Therefore, most of electronic products have air-ventilation holes to eliminate heat that is generated inside the products. The shapes of ventilation holes are usually complicated since aesthetic appearance of the products is important these days. In order to create those complicated shapes, designers should do time-consuming jobs because most of commercial CAD systems do not provide the functions that create patterns of lofted parts along freeform surfaces. In this research, an automated air-ventilation hole modeling system was proposed. The system generates patterns of lofted objects on freeform surfaces. Standard process to create air-ventilation holes manually was established, and vent-hole types and pattern types were classified into several categories. Designers can create many kinds of vent-holes by combining vent-hole types and pattern types. Users can also utilize user-defined pattern which can give users more flexibility. Developed system was applied to several design examples and the results are presented.

Heat Transfer Analysis in a PDP Ventilation Chamber (PDP용 배기로내 열전달 현상 해석)

  • Park, Hyeong-Gyu;Jeong, Jae-Dong;Kim, Chan-Jung;Lee, Jun-Sik;Park, Hui-Jae;Jo, Yeong-Man;Jo, Hae-Gyun;Park, Deuk-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.3
    • /
    • pp.347-355
    • /
    • 2001
  • A heat transfer analysis in a ventilation chamber of Plasma Display Panel(PDP) has been conducted. The process requirement is to precisely follow prescribed temperature trajectory while maintaining temperature uniformity for each panel. Firstly, experiment in a test chamber has been carried out and the results are compared with the unsteady 3D numerical data. Reasonable agreement was found, which suggested that the employed numerical model had its credibility in actual PDP ventilation processes. On this ground, a tact-type heating/cooling system was analyzed. The panel temperature in the 40$^{\circ}C$ tact-type system was more uniform than that in the 80$^{\circ}C$ one. For improving the uniformity of panel temperature, relocation of ventilation head to the rear part and inlet flow control are required. Comparison of full simulation of a cart and simplified simulation of one panel indicates the optimized panel pitch can also be predicted.

Improvement of hot work environment in the curing processes of a tire manufacturing company (타이어 제조공장 가류공정의 온열환경 개선에 관한 연구)

  • Lim, Jung-ho;Kim, Tae-Hyeung
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.21 no.1
    • /
    • pp.1-10
    • /
    • 2011
  • Generally, the tire curing process is the process in which the sulfur is added and subsequently the tire is heated to give the tire elasticity. In this process, all kinds of the chemicals in the tire are emitted with a lot of heat. The chemical fume and heat aggravate the work environment. To solve this problem, 92 local exhaust ventilators and 8 gravity ventilators were used, but not satisfactory yet. Preliminary survey showed that the temperatures in the process were very high: 30.3, 32.9 and $37.2^{\circ}C$ at 2, 4 and 6m above the ground level, respectively in the winter (outside temperature was $2^{\circ}C$). It can be imagined that the process is severely hot in the summer time. The higher temperature distribution in the higher space tells us that the hot plume could not be removed with the existing ventilation systems. Therefore, in this study, some alternative ventilation systems were designed. The partitions were used to contain the hot plume to increase the capture efficiency. The gravity ventilators were newly designed to improve the extraction efficiency of hot fume. To satisfy the balance of pressure in the curing process, some supply air system was introduced by renewing the existing air conditioning system. Many alternative solutions were evaluated by using computational fluid dynamics modelling. The best and applicable solution was selected and the existing ventilation system was modified. After implementing the new ventilation system, the hot environment was much improved. The temperature reduction in the curing process was about $6.4^{\circ}C$.

Design of a Local Ventilation System in the Non-Standard Air Condition using the Spreadsheet Model (스프레드시트 모델을 이용한 비표준 공기상태에서의 국소환기시스템의 설계)

  • 조석호
    • Journal of Environmental Science International
    • /
    • v.6 no.6
    • /
    • pp.645-658
    • /
    • 1997
  • A study on ventilation design using the spreadsheet model is carried out to propose means of available design. A sample of complex ventilation system In the non-standard condition Is used to illustrate thins spreadsheet model. In developing the spreadsheet model, this study has attempted to it general by using computional equations and design parameters that can be readily applied to any spreadsheet software. Also, most design data is contained in the spreadsheet template. This template provides the same design information as the ACGIH worksheet, and operates Quickly and emclenuy, and is fiexible enough to use under different conditions. This spreadsheet model allows the ventilation engineer to design quickly and accurately the ventilation system, without spending too much effort In the design process. By storing on computer and diskette, the design data computed finally can be used as a permanent record of specific ventilation system, and because of finally to be able to design over and over again while making only slight changes to the Input data, the spreadsheet model is used availably to accomplish the design optimazation by redesign and troubleshooting by review from field measurements. Also, the spreadsheet model is available for designing ventilation system under different condition or evaluating existing system or design drawing, because changes In the layout or formulae can be readily made to fit the needs of the designer.

  • PDF

Decision Making Methodology on Ventilation System for Road Tunnels Based on Multi-Attribute Utility Theory (다속성 효용이론을 활용한 터널환기방식 선정)

  • Lee, Hye-Jin;Kang, Sang-Hyeok;Park, Won-Young;Seo, Jong-Won
    • Korean Journal of Construction Engineering and Management
    • /
    • v.8 no.3
    • /
    • pp.106-115
    • /
    • 2007
  • The size and length of road tunnels have been gradually expanded as industry developed. Consequently, the risk has been increased. The decision making process for ventilation system for road tunnels involves a large amount of information on economic feasibility, construction methods, and safety etc. In situation where systematically structured decision making process is unavailable, almost decisions about ventilation systems are made based on engineers' private knowledge and experiences. Procedure and criteria to choose the best optimized ventilation system among many alternatives are proposed, breaking away from the economic dependency-oriented decision making. This paper presents a Multi-Attribute Utility Theory and AHP based function with which planners can calculate overall utility of each alternative. It is anticipated that the effective use of the proposed methodology for decision making on ventilation systems ould be able to reduce the likelihood of the occurrence of potential safety risks as well as increase the overall ventilation performance.

A Valuation and Improvement of Industrial Ventilation System of Printing Process in Synthetic Leather Factory using Dimethylformamide (DMF를 사용하는 합성피혁 공장 인쇄공정의 산업환기시스템 평가 및 개선)

  • Lee, Sun Woo;Kim, Tae Hyeung;Kim, Jung Man;Kim, Jong Cheul
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.19 no.2
    • /
    • pp.113-126
    • /
    • 2009
  • In the recent years, health effect of dimethylformamide(DMF) has been one of critical industrial hygiene issues. There might be many factors to increase the exposure level of DMF. Among those factors, industrial ventilation would be one of the main factors. In this study, industrial ventilation systems of printing processes in synthetic leather factories were thoroughly surveyed and the improved ventilation systems were proposed. 7 synthetic leather factories were selected for this study. After the ventilation systems were visually inspected, each component of the system was tested by using the appropriate instruments. Hood face velocities, fan exhaust flow rates, fan static pressures, fan rotation rates, etc were measured. In addition, flow visualization techniques were used to observe flow patten around hoods and inside the factory buildings. After gathering all qualitative and quantitative information, the test results were analysed to see if any improvement might be necessary. For the system to be improved, the re-design plans were made by using computational fluid dynamics softwares. The softwares used in this study were AIRPAK and STAR-CD. The effectiveness of the several improvement options were tested, then the best cost effective option was selected. Finally, the standard ventilation systems were proposed to minimize the exposure levels of DMF.

The Effect of Paper Permeability on Cigarette Properties (종이의 투기도가 담배 물성에 미치는 영향)

  • Young-Hoh Kim;Young-Rim Han;Moon-Yang Lee;Young- Taek Lee;Chung-Ryul Kim
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.33 no.1
    • /
    • pp.62-62
    • /
    • 2001
  • The cigarette ventilation affects not only the amount of tar and nicotine delivery by a cigarette, but also the composition of the smoke. Therefore, it is important to stabilize of variability in cigarette ventilation that would be affected by changes in cigarette components. This work was conducted to determine the major factors that influence the cigarette ventilation and also to provide fundamental informations for improving the uniformity of cigarette performances. To evaluate the effect of cigarette ventilation as a dependant variable, the three independent factors were the air permeability of plugwrap, tipping paper and the filter pressure drop. We determined the effect of paper permeability on ventilation variability and the optimum condition in combinations of independent factors. The mean of cigarette ventilation was increased as plugwrap permeability increases, particularly at 26,000 CU. However, it was exhibited that standard deviation and coefficient of variation of the cigarette ventilation were decreased with increasing plugwrap permeability. At the 600 CU and 1,200 CU of tipping paper permeability, process capability index (Cp) of the cigarette ventilation increased as plugwrap permeability increases. Following the optimum condition of cigarette ventilation induced by fitted regression equation, one was to optimize 50% ventilation level is by combination with plugwrap permeability of 16,000 CU, tipping paper permeability of 810 CU, filter pressure drop of 319 mm$H_2O$, respectively.

A Study on Numerical Analysis and Performance Improvement of Ventilation Systems in Coating Room (코팅 룸 배기시스템 수치해석 및 성능개선에 대한 연구)

  • Lee, Ki Yeon;Kim, Kug Weon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.5
    • /
    • pp.2086-2091
    • /
    • 2013
  • One of the most important objects for the industrial ventilation is to protect worker's health from the harmful substances. Mainly in industrial ventilation, the harmful substances broken out through manufacturing process are to be quickly emitted outside. Recently the importance of the industrial ventilation increases with the recognition change of industrial ventilation from manufacturing focusing to human focusing. In this paper, the air flow simulation inside the coating room is performed. All the coating room and the ventilation system are modeled by SolidWorks program and air flow distribution and ventilation performance are analyzed by Flow simulation program. And the air flow directions and the air flow velocities inside the coating room are enhanced with the use of local ventilation.