• Title/Summary/Keyword: ventilation method

Search Result 741, Processing Time 0.031 seconds

A fundamental study on the ventilation analysis method for the network-type tunnel - focused on the none hardy-cross method (네트워크형 터널의 환기해석 방법에 대한 기초연구-비 Hardy-Cross 방법을 중심으로)

  • Kim, Hyo-Gyu;Choi, Pan-Gyu;Ryu, Ji-Oh;Lee, Chang-Woo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.3
    • /
    • pp.291-303
    • /
    • 2016
  • Recently, various forms of diverging sections in tunnels have been designed as the demand for underground passageway in urban areas increases. Therefore, the complexity of the ventilation system in tunnels with diverging sections requires a ventilation analysis method different from the conventional method for the straight tunnels. None of the domestic and foreign tunnel ventilation design standards specifies the method for the ventilation network analysis, and the numerical analysis methods have been most widely used. This paper aims at reviewing the ventilation network analytical method applicable as the design standard. The proposed method is based on the characteristic equations rather than the numerical analysis. Thanks to the advantages of easy application, the Hardy-Cross method has been widely applied in the fields of mine ventilation and tunnel ventilation. However, limitations with the cutting errors in the Taylor series expansion and the convergence problem mainly caused by the mesh selection algorithm have been reported. Therefore, this paper examines the applicability of the ventilation analysis method for network-type tunnels with the gradient method that can analyze flow rate and pressure simultaneously without the configuration of mesh. A simple ventilation analysis method for network-type tunnels is proposed.

Assessment of clothing ventilation by a trace gas method (Trace gas법에 의한 의복의 환기 양상의 평가)

  • 추미선
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.21 no.8
    • /
    • pp.1387-1395
    • /
    • 1997
  • Effects of the ambient air temperature and the opening position on the pattern of the clothing ventilation of a thermal manikin wearing an impermeable blouse were investigated by the trace gas method. Under an isothermal condition, the ventilation was governed by diffusion, and the ventilation rate through the wrist-openings was greatly affected by the distance from the openings. Under non-isothermal conditions, however, the ventilation was accelerated by the convection driven by the temperature gradient between the clothing microclimate and the surrounding air; the greater the temperature gradient, the greater the ventilation. Even though it was certainly affected by the ambient air temperature, the ventilation rate was more significantly influenced by the position of openings. The ventilation patterns at the arm and the body were distinctive.

  • PDF

Assessment of Clothing Ventilation through Openings (개구부를 통한 의복의 환기 양상 평가)

  • 추미선
    • The Research Journal of the Costume Culture
    • /
    • v.8 no.5
    • /
    • pp.660-667
    • /
    • 2000
  • Clothing ventilation was investigated using a manikin wearing an impermeable overall under an isothermal condition, in which the ventilation occurred only through the openings. The ventilation volume was estimated by both microenvironment volume and ventilation rate, where, the microenvironment volume was measured by an air subsitution method and the ventilation rate by a trace gas method. Microenvironment volume of the experimental garment was about 21.0 liters. Even though it was certainly affected by the distance from the opening, the ventilation rate was more significantly influenced by the opening area and the shape of air layer in the clothing. The volume of air exchange in the clothing microenvironment was affected greatly by the microenvironment volume and the opening area, and it was different for each part of the body with bigger air exchange volume in the microenvironment of the leg as compared to that of the arm.

  • PDF

Analysis on Ventilation Performance of Natural Ventilation Systems in Multi-Family Housing Using Blower Door Test (Blower Door Test를 이용한 공동주택 자연환기시스템의 환기성능 분석)

  • Kim, Min Seok;Auh, Jin Sun;Hong, Goopyo;Kim, Byungseon Sean
    • KIEAE Journal
    • /
    • v.16 no.6
    • /
    • pp.129-134
    • /
    • 2016
  • Today, natural ventilation systems are widely applied in multi-family housing. However, studies using the wind data trend line of the blower door test are insufficient. Purpose: Through this study, we will propose a computational method about ventilation performance of natural ventilation systems by conducting blower door test. Method: First, we sealed the gaps between the main systems including the natural ventilation system and conducted the blower door test. Next, the natural ventilation system was opened, the blower door test was conducted, and the difference in air flow rate between when closed and when opened was checked. Blower door test was carried out with a pressure difference of 50 Pa. Result: Therefore, the ventilation performance of the natural ventilation system was checked by drawing a trend line using the data to calculate the air flow rate at 2 Pa of the natural ventilation equipment standard pressure difference.

Development of Vehicle Tunnel Ventilation System (도로터널 환기시스템 개발연구)

  • Lee, Chang-Woo
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.71-74
    • /
    • 2008
  • This paper aims at studying the key design elements for the optimal ventilation system design, developing the design models and suggesting the design guidelines. The key elements include the basic exhaust emission rate, wall friction coefficient, vehicle drag coefficient and slip streaming effect, jet fan operating efficiency, natural ventilation force and installation scheme for jet fans and ventilation monitors in tunnel. The design models developed in this study are one-dimensional ventilation simulator to analyze the air flow, pressure profile and pollutant dispersion inside and outside tunnel, expert model to choose the optimal ventilation method, and the ventilation characteristic chart to evaluate the preliminary ventilation system. The study results are reflected in the design guideline for road tunnel ventilation system.

  • PDF

A Study on Ventilation Characteristics of Industrial Windows (공장창호의 환기특성에 관한 연구)

  • Piao, Cheng-Xu;Kim, Tae-Hyeung;Ha, Hyun-Chul;Xu, Rong-Bin
    • Journal of Environmental Science International
    • /
    • v.20 no.5
    • /
    • pp.581-587
    • /
    • 2011
  • Industrial natural ventilation systems consist of gravity ventilator, the high/low windows and doors. Especially, the high windows play an important role in the industrial natural ventilation systems. Generally speaking, industrial high windows are divided into 3 types; louver type, $45^{\circ}$ open type and $90^{\circ}$ open type. This study was numerically and experimentally conducted. Three types of windows were tested to know the ventilation characteristics and estimate the ventilation efficiencies. Numerically, computational fluid dynamics software (AIR PAK Ver. 2.0) was used to observe the flow characteristics inside the industrial building and the concentration contours generated by the tracer gas method. Experimentally, the flow visualization technique and the tracer gas method were applied with the model building to characterize the flow pattern inside the model building and to estimate the ventilation efficiencies with the different windows. It was found that $90^{\circ}$ open type window was most effective for the discharge of pollutants from the industrial building. On the other hand, the louver type window was found to be less effective than any other windows.

A Study on the using of the Ventilation System as the Method of Improvement of Air Quality in the Schools (학교건물의 공기질 개선을 위한 환기시스템 적용에 관한 연구)

  • Ahn, Chul-Lin;Kim, Jwa-Jin;Kum, Jong-Soo;Park, Hyo-Soon
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.11 no.2
    • /
    • pp.17-23
    • /
    • 2004
  • The purpose of this study concerns the improvement of air quality in school classrooms. Polluted indoor air is improved by efficient ventilation systems. So it is important to measure the amount of ventilation needed in classrooms. First, the amount of natural ventilation were measured through a tracer gas method. And we have established a heat recovery ventilation system from 4 cases of airflow in classrooms, and we have measured the change of $CO_2$ density. According to air quality measurements in the classrooms, the density of $CO_2$ is well above environmental standards which are acceptable. When the amount of ventilated airflow increases, indoor air quality is improved. It is surveyed that the most suitable amount of external inducted air is 770 CMH to satisfy $CO_2$ less than 1,000 ppm in classrooms. For improvement of air quality in classrooms, we must consider a suitable ventilation plan and installation of ventilation systems when constructing school buildings.

Application of Solar Chimney System for Natural Ventilation in Underground Space (지하공간의 자연환기를 위한 태양 굴뚝 시스템의 응용)

  • Jang, Hyang-In;Suh, Seung-Jik
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.2
    • /
    • pp.87-95
    • /
    • 2010
  • This study analyzed the performance of solar chimney system for natural ventilation in underground space. A mathematical model of the solar chimney was proposed in order to predict its performance under varying parameters and Korea climatic condition. Steady state heat transfer equations were set up using a energy balanced equations and solved using a inverse matrix method. Numerical simulation program to analyze system was developed by using MATLAB. As the results, the ventilation performance of the solar chimney was determined by the temperature difference of air channel and inlet, and the temperature difference was influenced by insolation, stack height and distance of air gab. Also the solar chimney system can provide $262.9m^3/h$ of annual average ventilation rate. Because seasonal differences of ventilation rate was calculated within 25%, the solar chimney system can be used for every season in Korea climatic condition. Through this study, performance of solar chimney system for natural ventilation was verified by numerical method. Consequently, the solar chimney system is proved to be effective device for natural ventilation utilizing at all times, and the additional studies should be made through the experimental method for imagineering and commercialization.

Investigations and Analyses of Duck Breeding Facilities in Jeollanam-do Province, Korea (전남지역 오리 사육시설 실태 조사 및 분석)

  • Kwon, Kyeong-seok;Yang, Kayoung;Kim, Jong-bok;Kim, Jung-kon;Jang, Donghwa;Choi, Sungmin;Lee, Sang-yeon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • Number of duck and its breeding facilities have been steadily decreasing for financial and social issues in Korea. Therefore, the 'turning point' for duck industry is strongly demanded. In this study, the questionary survey was carried out to provide backgrounds for developing policy and technology for duck breeding farms. The questionary survey aimed to investigate the information of operation strategy of farm, ventilation, cooling and heating. The total number of survey respondents was 74. In case of facility type, 55.4% of respondents stated they used greenhouse type, 31.3% for winch-curtain type, and 2.7% for windowless type (mechanically ventilated facility). More than 85% of the facilities were using 'natural ventilation', it meant that these situation can restrict the not only environmental control but also the supply policy for 'smart farm' of the Government. 44.6% used the combination of the cross-ventilation method and roof-ventilation method for ventilation operation in summer season, and 31.1% followed only the cross-ventilation method. In case of winter season, 36.5% used the cross-ventilation method, and 33.3% used the combination of cross and roof-ventilation, method. For the ventilation strategy, about 86.5% depended on farmer's experience. In case of heating and cooling, 79.7% were using kerosene heater for winter season, and 43.2% were using mist-spray for summer season, respectively. More than 75% stated that cooling and heating strategies were based on farmer's experience. From the analyses of the survey results, a few proposals for developing policy and technology for duck breeding farm was suggested.

Estimation of Ventilation Volume by Traffic Ventilation Force in Tunnel (교통환기력에 의한 터널내 환기량 추정에 관한 연구)

  • 김종호;이상칠;도연지;김신도
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.11 no.3
    • /
    • pp.273-278
    • /
    • 1995
  • This study is to estimate the ventilation volume by the traffic that originated from driving automobiles for two tunnels (Kugi tunnel and Kumhwa tunnel) that adopted natural ventilation system among tunnels of Seoul, and on the basis of which, we estimated the ventilation velume at various conditions. With the result of the estimation, we will present the basic method that can be operated with the optimum condition for the ventilation system. Estimating the predicted ventilation volume in the tennel by the pollutant concentration, we used traffic volume and CO emission data by the automobile speed and CO concentration in the tunnel. And, when we estimated the traffic ventilation volume by natural and traffic ventilation force, we used traffic volume, automobile speed, tunnel area, automobile area data and so on. As the result of simple regression between predicted ventilation volume and traffic ventilation volume, we attained the regression coefficient 0.88, and achieved the relation form that predicted ventilation volume equal 0.12x traffic ventilation volume-92, 000. Using this equation, we estimated the ventilation volume to satisfy the enviromnental standards of several space, and calculated the required volume for mechanical ventilation. Incase of Kumhwa Tunnel, there is a need of mechanical ventilation all day long to satisfy air quality standard 9 ppm for 8 hours average and 10 ppm for the indoor air quality standard of public facilities.

  • PDF