• Title/Summary/Keyword: ventilation fan

Search Result 279, Processing Time 0.024 seconds

Development of a programming logic to estimate the wall friction coefficient in vehicle tunnels with piston effects (교통환기력이 작용하는 터널 내 벽면마찰계수 추정을 위한 프로그램 로직 개발)

  • Kim, Hyo-Gyu;Choi, Pan-Gyu;Ryu, Ji-Oh;Lee, Young-Hoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.1
    • /
    • pp.39-53
    • /
    • 2018
  • Generally, the total ventilation resistance coefficient in a tunnel consists of inlet/outlet loss coefficient, wall friction coefficient, and other loss coefficient caused by sudden expansion and contraction of cross-section, etc. For the tunnel before opening, when the running ventilation fan is stopped, the wind speed in the tunnel is reduced by the total ventilation resistance drag. The velocity decay method is comparatively stable and easy to estimate the wall friction coefficient in the pre-opening tunnel. However, the existing study reported that when the converging wind speed is a negative value after the ventilation fan stops, it is difficult to estimate the wall friction coefficient according to the velocity decay method. On the other hand, for the operating tunnel in which the piston effect acts, a more complex process is performed; however, a reasonable wall friction coefficient can be estimated. This paper aims at suggesting a method to minimize the measurement variables of the piston effect and reviewing a method that can be applied to the operating tunnel. Also, in this study, a new method has been developed, which enables to calculate an variation of the piston effect if the piston effect is constant with a sudden change of external natural wind occurring while the wind speed in the tunnel decreases after the ventilation fan stops, and a programming logic has been also developed, which enables dynamic simulation analysis in order to estimate the wall friction coefficient in a tunnel.

Control Effect of Temperature and Humidity by Ventilation Fan Operation Methods in Wintering Honey Bee House (월동용 양봉사의 환기팬 작동방식에 따른 온 ${\cdot}$ 습도 조절효과)

  • Lee, Jong-Won;Lee, Hyun-Woo;Lee, Suk-Gun;Jin, Ran-Shu;Choi, Kwang-Soo
    • Journal of Bio-Environment Control
    • /
    • v.12 no.3
    • /
    • pp.127-131
    • /
    • 2003
  • This study was conducted to establish the ventilation fan operation schedule to be able to provide satisfactory environment for colonies in thc wintering honey bee house. The simulation and practical measuring test were conducted to verify the applicability of an existing simulation program to thc calculation of inside thermal environment condition of the house, and the environment control performance was compared between the two types of fan operation schedule to find the proper schedule. It was concluded that the program could be used to design thc materials of the enclosure and the fan operation schedule and decide the number of accommodation hives. Inside temperature of bee house controlled by the fan operation schedule B was lower than the schedule A under the similar high outside temperature condition. In the presence of the high outside temperature condition, inside air temperature of bee house could be decreased by changing fan operation schedule A to schedule B. The humidity variation in bee house controlled by the tan operation of schedule B was smaller than that by schedule A. These results indicated that the schedule B was superior in the aspect of the environment control performance.

The Characteristics of Behavior for Ventilation and Maintenance for Ventilation Equipments by Multi-family Housing Residents to Actualize Healthy Housing (건강주택 실현을 위한 공동주택 거주자의 환기행태 및 환기기기 관리 특성에 관한 연구)

  • Lee, Youn-Jae
    • Journal of the Korean housing association
    • /
    • v.21 no.5
    • /
    • pp.93-101
    • /
    • 2010
  • The purpose of the study is to investigate the behaviors for ventilation to control indoor air quality and characteristics of the maintenance for ventilation equipments by multi-family housing residents. This study was conducted by the survey in the area of Seoul and Kyungki-do. The results of the study are as follows: the majority of respondents conduct ventilation once a day, below 20 minutes with opening some windows of the inside of the house. The time for ventilation is generally between 9-11 am. and 5-7 pm. Most of the wives are responsible for ventilation activities. In addition, so far building materials and furniture are not seriously considered as the source of indoor air pollution by the respondents. Their satisfaction for indoor air before and after ventilation is perceived as just the level of average. As the mechanical ventilation equipments such as a hood and an exhaust fan, half of the respondents are using them frequently. However, the ventilation equipments are not maintained well. Specially maintenance and checks for exhaust fans are hardly conducted. In conclusion, the frequency of ventilation is very limited and residents show passive attitudes about ventilation and maintenance of ventilation equipments. Therefore, for the actualization of healthy housing, educational programs and guidelines on the way of ventilation targeting the residents should be set up and a certain organization has to check periodically the performance of the ventilation equipments of each house in the multi-family housing complex.

Energy and Air Quality Benefits of DCV with Wireless Sensor Network in Underground Parking Lots

  • Cho, Hong-Jae;Jeong, Jae-Weon
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.2
    • /
    • pp.155-165
    • /
    • 2014
  • This study measured and compared the variation of ventilation rate and fan energy consumption according to various control strategies after installing wireless sensor-based pilot ventilation system in order to verify the applicability of demand-controlled ventilation (DCV) strategy that was efficient ventilation control strategy for underground parking lot. The underground parking lot pilot ventilation system controlled the ventilation rate by directly or indirectly tracking the traffic load in real-time after sensing data, using vehicle detection sensors and carbon monoxide (CO) and carbon dioxide ($CO_2$) sensor. The ventilation system has operated for 9 hours per a day. It responded real-time data every 10 minutes, providing ventilation rate in conformance with the input traffic load or contaminant level at that time. A ventilation rate of pilot ventilation system can be controlled at 8 levels. The reason is that a ventilation unit consists of 8 high-speed nozzle jet fans. This study proposed vehicle detection sensor based demand-controlled ventilation (VDS-DCV) strategy that would accurately trace direct traffic load and CO sensor based demand-controlled ventilation (CO-DCV) strategy that would indirectly estimate traffic load through the concentration of contaminants. In order to apply DCV strategy based on real-time traffic load, the minimum required ventilation rate per a single vehicle was applied. It was derived through the design ventilation rate and total parking capacity in the underground parking lot. This is because current ventilation standard established per unit floor area or unit volume of the space made it difficult to apply DCV strategy according to the real-time variation of traffic load. According to the results in this study, two DCV strategies in the underground parking lot are considered to be a good alternative approach that satisfies both energy saving and healthy indoor environment in comparison with the conventional control strategies.

The Survey for Ventilation Systems of Weaned Pig House in Korea (국내 이유자돈사 환기시설 실태 조사)

  • Lee, Jun-Yeob;Jeon, Jung-Hwan;Song, Jun-Ik
    • Journal of Animal Environmental Science
    • /
    • v.20 no.1
    • /
    • pp.9-14
    • /
    • 2014
  • This survey was conducted to give the basic information for ventilation systems of weaned pig house to establish the acceptable ventilation system in Korea. A total of 11 farms were surveyed in this study and 1 more farm in each province was regionally selected. The general information, inlet and outlet ventilation system, alley in house, space allowance of weaned pigs and manure management were surveyed. Space allowance of weaned pig in 82% of surveyed farms met the legal standard. Side wall inlet and outlet ventilation system were 82% and 73% of surveyed farms, respectively. Moreover, 73% farms have alley in the pig house to control temperature of inlet air. In this survey, both planar slot and circular duct inlet system and side wall fan outlet system could be a favorable ventilation system in weaned pig house.

An Application Study on a Strategy to Promote Natural Ventilation at an Atrium Building (아트리움을 이용한 자연환기 활성화 방안에 관한 사례 연구)

  • Shin, Seon-Joon;Lee, Seung-Yeon;Jo, Jin-Kyun;Han, Soo-Gon;Hong, Min-Ho
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.540-545
    • /
    • 2008
  • An atrium has great potential in natural ventilation aided by buoyance effect. Architectural design of an atrium is very critical to maximize the effect. However, it is not easy of an atrium to have optimum shape for natural ventilation, from the aesthetic and economic point of view. Admitting this condition, we suggested a strategy to promote natural ventilation, which can be adopted only with small design change. At first, we installed BIPV on the top of an atrium to strengthen buoyancy effect, and combine forced ventilation by low pressure fan. To evaluate the performance of the measure, CFD simulation and Energy-Airflow analysis were achieved.

  • PDF

Energy Saving Potentials of Ventilation Controls Based on Real-time Vehicle Detection in Underground Parking Facilities

  • Cho, Hong-Jae;Park, Joon-Young;Jeong, Jae-Weon
    • International Journal of High-Rise Buildings
    • /
    • v.2 no.4
    • /
    • pp.331-340
    • /
    • 2013
  • The main topic of this paper is to show a possibility of indoor air quality enhancement and the fan energy savings in underground parking facilities by applying the demand-controlled ventilation (DCV) strategy based on the real-time variation of the traffic load. The established ventilation rate is estimated by considering the passing distance, CO emission rate, idling time of a vehicle, and the floor area of the parking facility. However, they are hard to be integrated into the real-time DCV control. As a solution to this problem, the minimum ventilation rate per a single vehicle is derived in this research based on the actual ventilation data acquired from several existing underground parking facilities. And then its applicability to the DCV based on the real-time variation of the traffic load is verified by simulating the real-time carbon monoxide concentration variation. The energy saving potentials of the proposed DCV strategy is also checked by comparing it with those for the current underground parking facility ventilation systems found in the open literature.

An Experimental Study of Smoke Control in Tunnel Fires with Jet Fan (터널화재시 제트팬에 의한 연기제어에 관한 실험적 연구)

  • 이성룡;김충익;유홍선;방기영
    • Tunnel and Underground Space
    • /
    • v.12 no.2
    • /
    • pp.92-98
    • /
    • 2002
  • In this study reduced-scale experiments were conducted to analyze smoke movement in tunnel fire with jet fan, The 1/20 scale experiments were carried out under the froude scaling using gasoline pool fire range from 6.6 to 12.5 cm in diameter with total heat release rate from 0.714 to 4.77 kW. In the case of fires under the 2.5kW, backlaying was reduced about 40cm and smoke was effectively controled in downstream of the fan when operating the fan. The smoke layer was moved down and the ceiling temperature was decreased compared to that of without fan case in upstream of the fan, but the temperature in the lower part of the tunnel was increased.

A Study on the Mechanical Ventilation Design that Consider Supply and Exhaust Efficiency of the Apartment House Kitchen (공동주택 주방의 급ㆍ배기효율을 고려한 기계환기 설계에 관한 연구)

  • 함진식
    • Journal of the Korean housing association
    • /
    • v.15 no.3
    • /
    • pp.101-108
    • /
    • 2004
  • To find more efficient exhaust effect, air curtain of upward or downward trend in gas table and left or right side of range hood were made. As result that film vapor from range hood lower part by digital camera, the air current change by moving existence and nonexistence of exhaust fan and direction of air curtain were known. Under all experiment condition, upward air curtain superior exhaust performance.