• Title/Summary/Keyword: ventilation efficiency

Search Result 402, Processing Time 0.027 seconds

An Evaluation on IR Sensor Based Demand Controlled Ventilation Strategies for Multi-zone in the Apartment House (IR(Infrared) 센서기반 제어방법에 따른 공동주택 멀티 존 환기시스템 평가 연구)

  • Hong, Sung-Min;Yoon, Dong-Won
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.2
    • /
    • pp.174-182
    • /
    • 2012
  • In previous research, most occupant said that they have not operated ventilation system installed in the house, because of increasing of energy consumption and unconcern of ventilation. Therefore, it is necessary to applied the sensor based demand controlled ventilation for the IAQ(Indoor Air Quality) and improvement of energy efficiency in ventilation strategy. The propose of this study is to present a application method of IR(Infrared) sensor for multi-zone DCV(Demand Controlled Ventilation) in the apartment house. It is possible that IR sensor could be used for DCV, because that could detect the occupant and action. IR sensor based DCV strategies are established to evaluate characteristic of application in the apartment house and simulated by Contam program. As a result, they have some week points though, if they would be applied DCV with optimum strategy, it would be useful to improve IAQ, to reduce energy consumption.

Ventilation Efficiency Evaluation of Domestic Limestone Mine Using Tracer Gas Method (추적가스법을 적용한 국내 석회석 광산의 환기성능 평가 연구)

  • Kim, Young-su;Roh, Jang-hoon;Kim, Jin
    • Tunnel and Underground Space
    • /
    • v.26 no.4
    • /
    • pp.274-282
    • /
    • 2016
  • Natural ventilation is employed in limestone mines that have been currently operated in Korea, and there has been a growing issue of a significantly weak airflow caused by the large-scale excavation. Thus, the air quality in the working area is considerably poor. In order to improve this circumstance, it is mainly required to examine ventilation performance. In this study, the examination of ventilation efficiency was conducted by using tracer gas method. The result of this work indicated detailedly the ventilation problems in research mine, in that extremely low air velocity, recirculation, and air change rate were evaluated quantitatively using tracer gas. Therefore the ventilation performance evaluation using tracer gas can be opted as a precise method to improve the working area in mines.

Numerical Optimization for Performance Improvement of a Tunnel Ventilation Jet fan (터널 환기용 제트홴의 성능 향상을 위한 수치최적화)

  • Kim, Joon-Hyung;Kim, Jin-Hyuk;Kim, Kwang-Yong;Yoon, Joon-Yong;Choi, Young-Seok;Yang, Sang-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.5
    • /
    • pp.63-68
    • /
    • 2011
  • This paper presents an optimization procedure for performance improvement of a tunnel ventilation jet fan. Optimization techniques based on response surface approximation (RSA) are employed to improve the aerodynamic performance of a tunnel ventilation jet fan. For numerical analysis, three-dimensional Renolds- averaged Navier-Stokes (RANS) equations with shear stress transport turbulence model are discretized by using finite volume approximations and solved on hexahedral grids to evaluate the total efficiency at the operating condition as the objective function. Four geometric variables defining the meridional length and the thickness profile at the hub and shroud in the jet fan rotor are selected as design variables for the numerical optimization. The results of the numerical optimization show that the total efficiency of the optimized model is significantly improved in comparison with the base model.

Implementation of Smart Ventilation Control System using IoT and Machine Learning (IoT와 기계학습을 이용한 스마트 환풍기 제어 시스템 구현)

  • Lee, Hui-Eun;Choi, Jin-ku
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.2
    • /
    • pp.283-287
    • /
    • 2020
  • In this paper, we implemented a control for ventilation system based on IoT. It can on/off of system and monitoring current status through the smartphone app. We applied linear regression, one of machine learning algorithm. It autonomously collects data about temperature, humidity in home and works diagnosing system status. Using this proposed control method, the energy efficiency can be improved. It is expected to be used in energy efficiency and convenience.

A Study of the Indoor Air Quality Improvement for Large Scale Assembly Facilities (건축물의 대공간 집회시설의 실내공기질 개선방안에 관한 연구)

  • Lim, Tae-Sub;Kang, Seung-Mo
    • Korean Institute of Interior Design Journal
    • /
    • v.20 no.4
    • /
    • pp.183-190
    • /
    • 2011
  • Lately majority of churches have preferred to enlarge their worship area to both horizontal and vertical axis. According to expand their area which brings more devotees to the limited service area. Transform from a small church into a large church is no longer unprecedented issue in South Korea. As the size of church getting bigger, many unexpected issues become matters. One of the significant problem is that the number of people have experienced either fall a sleep or feel a doziness during their service period. Due to the limited condition for the specific building type such as religion facility(church), IAQ improvements is seriously concerned. Therefore, we are going to examine by using simulation tool, CF, a difference of ventilation efficiency about the location and number of windows, and find the best way of the ventilation efficiency in a multi-stories type church by changing the exhaust pipes location and size. Furthermore, in this thesis, by changing a ceiling height from the existing building to confirm that $CO_2$ have been satisfied for both the ventilation efficiency and IAQ.

Analysis on Ventilation Efficiency of Standard Duck House using Computational Fluid Dynamics (전산유체역학을 이용한 표준 오리사 설계안에 대한 환기효율성 분석)

  • Yeo, Uk-Hyeon;Jo, Ye-Seul;Kwon, Kyeong-Seok;Ha, Tae-Hwan;Park, Se-Jun;Kim, Rack-Woo;Lee, Sang-Yeon;Lee, Seung-No;Lee, In-Bok;Seo, Il-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.5
    • /
    • pp.51-60
    • /
    • 2015
  • In Korea, 69.4 % of duck farms had utilized conventional plastic greenhouses. In this facilities, there are difficulties in controlling indoor environments for raising duck. High rearing density in duct farms also made the environmental control difficult resulting in getting more stressed making their immune system weaker. Therefore, a facility is needed to having structurally enough solidity and high efficiency on the environmental control. So, new design plans of duck house have recently been conducted by National Institute of Animal Science in Korea. As a study in advance to establish standard, computational fluid dynamics (CFD) was used to estimate the aerodynamic problems according to the designs by means of overall and regional ventilation efficiencies quantitatively and qualitatively. Tracer gas decay (TGD) method was used to calculate ventilation rate according to the structural characteristics of duck houses including installation of indoor circulation fan. The results showed that natural ventilation rate was averagely 164 % higher than typically designed ventilation rate, 1 AER ($min^{-1}$). Meanwhile, mechanically ventilated duck houses made 81.2 % of summer ventilation rate requirement. Therefore, it is urgent to develop a new duck house considering more structural safety as well as higher efficiency of environmental control.

Efficiency of the Hybrid-type Air Purifier on Reducing Physical and Biological Aerosol (복합식 공기청정기의 물리적 및 생물학적 입자상 물질의 제거 효과)

  • Kim, Ki-Youn;Kim, Chi-Nyon;Kim, Yoon-Shin;Roh, Young-Man;Lee, Cheol-Min
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.5 s.92
    • /
    • pp.478-484
    • /
    • 2006
  • There was no significant difference in the CADR (Clean Air Delivery Rate) between physical aerosols, NaCl and smoke, and biological aerosols, airborne MS2 virus and P. fluorescens, which implicate that the hybrid-type of air purifier, applying the unipolar ion emission and the radiant catalytic ionization, imposed identical reduction effect on both physical aerosol and bioaerosol. Ventilation decreases the efficiency of air cleaning by unipolar ionization because high ventilation diminishes the particle concentration reduction effect. The particle removal efficiency decreases with increase in the chamber volume because of the augmented ion diffusion and higher ion wall loss rate. Particle size affects the efficiency of air ionization. The efficiency is high for particles with very small diameter because reduction of charge increases with particle size. If there is no increasing supply of ions, the efficiency of air cleaning by unipolar ionization increases with respect to initial concentration of particles because of the large space charge effect at high particle concentration and amplified electric field.

Analysis on Energy Demand Resulting From the Change in Window Area & Installation of Interior Exterior Blinds (건축물에너지효율등급 기밀시험이 등급에 미치는 영향분석)

  • Kim, Dae-Won;Chung, Kwang-Seop;Kim, Young-Il;Nam, Ariasae;Ju, Jung-Kyeong
    • Journal of Energy Engineering
    • /
    • v.23 no.1
    • /
    • pp.40-45
    • /
    • 2014
  • The ventilation frequency of 0.5 times in residential facilities is applied mandatorily to the housing facilities containing more than 100 house units to improve the indoor air quality and create comfortable interior conditions and pleasantness for residents. The Building Energy Efficiency Rating system requires the implementation of leakage test based on ventilation frequency with the test results being reflected in the efficiency ratings, thereby stimulating the precise construction of the fittings in the periphery of windows and savings of energy that can be lost due to the infiltration air. The inspection results of the Building Energy Efficiency Rating at the site showed that the ventilation frequency was in the range between 0.63 and 0.71 and that the difference was found to have a significant effect on the amount of energy reduction. It is urgent to conduct the study on highly leakage-proof buildings and construction methods, along with the expansion of mandatory leakage-proof diagnosis of non-residential buildings, considering the mandatory ventilation frequency below 0.6 for passive houses under the European standards and the target set by Korea to introduce the passive house, the rigorous standard for energy efficiency in buildings and mitigating their ecological footprint, by 2017 and achieve the zero house by 2025.

Experimental and CFD Study on the Exhaust Efficiency of a Smoke Control Fan in Blind Entry Development Sites (맹갱도 굴진 작업공간내 방재팬의 화재연 배기효율에 관한 현장실험 및 CFD 연구)

  • Nguyen, Vanduc;Kim, Dooyoung;Hur, Wonho;Lee, Changwoo
    • Tunnel and Underground Space
    • /
    • v.28 no.1
    • /
    • pp.38-58
    • /
    • 2018
  • The ventilation system plays a crucial role in underground mine safety. The main objective of the ventilation system is to supply sufficient air to dilute the contaminated air at working places and consequently provide tenable environment during the normal operation, while it also should be capable of controlling the fire propagation and facilitate rescue conditions in case of fire in mines. In this study, a smoke control fan was developed for the auxiliary ventilation as well as the fire smoke exhaust. It works as a free-standing auxiliary fan without tubing to dilute or exhaust the contaminated air from the working places. At the same time, it can be employed to extract the fire smoke. This paper aims to examine the smoke control efficiency of the fan when combined with the current ventilation system in mines. A series of the site experiments and numerical simulations were made to evaluate the fan performance in blind entry development sites. The tracer gas method with SF6 was applied to investigate the contaminant behavior at the study sites. The results of the site study at a large-opening limestone mine were compared with the CFD analysis results with respect to the airflow pattern and the gas concentration. This study shows that in blind development entry, the most polluted and risky place, the smoke fan can exhaust toxic gases or fire smoke effectively if it is properly combined with an additional common auxiliary fan. The venturi effect for smoke exhaust from the blind entry was also observed by the numerical analysis. The overall smoke control efficiency was found to be dependent on the fan location and operating method.

Numerical Analysis on Effect of Stemming Condition in Mine Ventilation Shaft Blasting (광산 통기수갱발파에서 전색조건이 발파효율에 미치는 영향에 관한 수치해석적 연구)

  • Kim, Jun-ha;Kim, Jung-gyu;Jung, Seung-won;Ko, Young-hun;Baluch, Khaqan;Kim, Jong-gwan
    • Explosives and Blasting
    • /
    • v.39 no.3
    • /
    • pp.15-23
    • /
    • 2021
  • Ventilation shafts are pathways in mines and tunnels for the removal of dust or smoke during underground space construction and operation. In mines, blasting with long blast holes is preferred for the excavation of a ventilation shaft in the 10~20m long crown pillar section. In this case, the bottom part of the blast hole is completely drilled in order to determine the drilling error, and this causes a problem of lowering the explosive charge and blasting efficiency. It is possible to solve the problem of explosive loading and to increase the blast efficiency by covering the curb of the blasthole by using stemming material. In this study, simulations for the blasting of a ventilation shaft were performed with various stemming lengths and the blasthole diameters(45, 76mm) using AUTODYN 2D SPH(Smooth particle hydrodynamics) analysis technique. Also the optimal bottom stemming column was derived by checking the size of the boulder and burden line according to blasting. Analysis result, blasting efficiency is lessened in case of stemming length less than 30cm and the optimal length of the stemming material should be 30cm or higher to achieve high efficiency of blasting.