• 제목/요약/키워드: vent ratio

검색결과 49건 처리시간 0.022초

밀폐공간에서 가스폭발에 의한 개구발생 후의 압력변화에 대한 해석 (Analysis of the Pressure Behavior with the Partial Rupture in Closed Vessel During Gaseous Explosion)

  • 윤재건;조한창;신현동
    • 한국안전학회지
    • /
    • 제14권3호
    • /
    • pp.40-47
    • /
    • 1999
  • A numerical study on gaseous explosion was carried out to predict the transient pressure behavior with the partial rupture in confined vessels. Equations, assumptions and solutions for central ignition of premixed gases in closed spherical vessels are proposed with various equivalence ratios of gas fuel, as $CH_4$ and $C_3H_8$, vent areas and vent opening pressures. Given vent opening pressure in a vessel, the magnitude of second peak pressure results from the vent areas and burning velocity, varied by equivalence ratio of gas fuel. In a living room of an apartment, the higher second peak pressure than the vent pressure is not appeared due to its large window areas. As vent opening pressure is higher, the larger damage by gaseous explosion is expected and the larger vent area is necessary for relieving the damage. In the same concentration, the gaseous explosion by propane rather than methane shows the larger damage due to its higher adiabatic flame temperature and equivalence ratio.

  • PDF

상자포장 청과물의 송풍저항 특성 (Resistance to Air Flow through Packed Fruits and Vegetables in Vented Box)

  • 윤홍선;조영길;박경규
    • Journal of Biosystems Engineering
    • /
    • 제20권4호
    • /
    • pp.351-359
    • /
    • 1995
  • In pressure cooling system, produce were packed in vented box and cooled rapidly by producing a difference in air pressure on opposite faces of stacks of vented box. So, energy requirements and performance of pressure cooling system depended upon the air flow rate and the static pressure drop through packed produce in vented box. The static pressure drop across packed produce in vented box normally depended upon air flow rate, vent area of box and conditions of produce bed (depth, porosity, stacking patterns, size and shape of products) in box. The objectives of this study were to investigate the effect of vent area and air flow rate on airflow resistance of empty box and packed produce in vented box, and to investigate the relationship between the air flow resistance of packed products in vented box and sum of air flow resistance of empty box only and products in bulk only. Mandarins and tomatoes were used in the experiment. The airflow rate were in the range of 0.02~1.0$m^3$/s.$m^2$, the opening ratio of vent hole were in the range of 2.5~20% of the side area. The results were summerized as follows. 1. The pressure drops across vented box increased in proportion to superficial air velocity and decreased in proportion to opening ratio of vent hole. A regression equation to calculate airflow resistance of vented box was derived as a function of superficial air velocity and opening ratio of vent hole. 2. The pressure drops across packed produce in vented box increased in proportion to superficial air velocity and decreased in proportion to opening ratio of vent hole. 3. Because of the air velocity increase in the vicinity of vent hole in box, the airflow resistances of packed products in vented box were always higher than sum of air flow resistance of empty box only and products in bulk only. 4. Based on the airflow resistance of empty box and products in bulk, a regression equation to calculate airflow resistance of packed products in vented box was derived.

  • PDF

실내 가스 폭발시 폭발압력 방출에 관한 연구 (A Study on the Explosion Relief Venting in the Gas Explosion)

  • 오규형
    • 한국안전학회지
    • /
    • 제20권3호
    • /
    • pp.71-77
    • /
    • 2005
  • This study aims to find the safe vent area to prevent a destruction of building by gas explosion in a building. Explosion vessel which used in this experiment is 1/5 scale down model of simple livingroom and its dimension is 100cm in length 60cm in width and 45cm in height. Liquified petroleum gas(LPG) was injected to the vessel to the concentration of 4.5vol%, and injection rate were varied in 1L/min or 4L/min. Gas mixture was ignited by the 10kV electric spark. For analysis the characteristics of vented explosion pressure according to the vent size and vent shape, its size and shape were varied. From the experiment, it was found that explosion pressure in the vented explosion :in affected by the gas injection rate, vent area and vent shape. And the vent area to volume ratio(S/V) to prevent the building destruction by explosion pressure, it is recommended that the design of vent area happened by the explosion should be above 1/500cm in S/V. And if the vent area has complicate structure in same area, vented explosion pressure will be higher than a single vent, and possibility of building destruction will increase. Therefore to effectively vent the explosion pressure for protect a building and residents from the gas explosion hazards, the same vent area should have a singular and constant shape in the cross-sectional area of the vessel.

벤트 현상 및 크기에 따른 가스폭발 특성에 관한 실증적 연구 (A Experimental Study on the Characteristics of Gas Explosion due to Vent Shape and Size)

  • 채수현;정수일;이영순
    • 한국안전학회지
    • /
    • 제21권3호
    • /
    • pp.38-44
    • /
    • 2006
  • The majority of both small and large-scale experiments on gas explosion have been carried out in the explosion instruments with cylindrical tubes of a high length/diameter ratio and vessels of a high height/length ratio, focusing on investigating the interaction between propagating flame and obstacles inside the tubes or vessels. The results revealed that there is a strong interaction between the propagating flame and turbulence formed after the flame passes the obstacle. However this paper focuses on analyzing the pressure impact or profile outside the vent in vented gas explosion in a partially confined chamber by performing gas explosion experiments in a reduced-scale experimental assembly properly constructed. This study has considered eight different cases in gas explosion based on variation of three kinds of parameters such as height of vessel, shape of the vent and vent size, and reveals that the large vessel with big size circle vent is more danger to the target than others because the overpressure is spread out faraway horizontally and vertically.

상용 열유동 해석 소프트웨어를 이용한 다이캐스팅 칠벤트의 성능평가 (Evaluation on Performance of Chill Vent in High Pressure Die Casting by Using a Commercial Software)

  • 강복현;김태범;김기영
    • 한국주조공학회지
    • /
    • 제32권3호
    • /
    • pp.133-137
    • /
    • 2012
  • Chill vent has a zigzag venting path which allows residual air or gases to exhaust out very quickly from the die cavity. However molten metal sometimes comes out through the gas venting surfaces causing flash. Effect of designing factors of chill vent and processing variables in high pressure die casting on the performance of chill vent was investigated through a series of calculations by using a commercial code. The most influential factor was the thickness of chill vent, followed by inlet velocity, vent width and die temperature.

플라스틱 컨테이너 상자의 개공율에 따른 딸기의 예냉 및 저장효과 (Effect of Plastic Container Vent Ratio on Strawberry Quality during Precooling and Storage)

  • 이호준;서정아;최정희;이강대;정문철
    • 한국식품저장유통학회지
    • /
    • 제17권5호
    • /
    • pp.581-585
    • /
    • 2010
  • 플라스틱 컨테이너의 통기공 비율에 따른 딸기의 예냉효과와 저장 중 품질비교를 위하여 플라스틱 컨테이너($520mm{\times}355mm{\times}182mm$)의 하단부와 양측면부의 면적당 통기공 비율을 5%, 10%, 15%, 20%로 제작하여 컨테이너 당80%의 체적비율로 적재한 후 차압예냉을 실시하고 $5^{\circ}C$에서 현 포장방법에 의거한 저장실험을 수행하였다. 딸기의 예냉 전 품온은 평균 $18^{\circ}C$였으며, 목적 품온 $2^{\circ}C$에 도달하는 시간은 처리구별로 20%는 1시간 9분, 15%는 1시간 13분, 10%는 2시간 2분 5%는 2시간 51분이 소요되었다. 예냉이 완료된 딸기는 PP 용기에 포장하여 $5^{\circ}C$ 저장에 저장하면서 중량감소율, 짓무름, 곰팡이 발생률 및 표면경도를 측정하였다. 중량감소율, 짓무름 발생률 및 부패율은 20% 개공율 처리구가 가장 높았던 반면 15% 개공율 처리구가 가장 낮았으며 5%와 10% 개공율 처리구는 중간적인 수준을 유지하였고, 표면경도에서는 처리구간 차이가 나타나지 않았다.

박과작물 재배 단동 비닐하우스의 천장 환기시스템 설치 실태조사 (A field survey on roof ventilation system of single-span plastic greenhouse in cucurbitaceae vegetable cultivation)

  • 여경환;유인호;이한철;정재완;최경이
    • 농업과학연구
    • /
    • 제40권4호
    • /
    • pp.317-323
    • /
    • 2013
  • This research was conducted to obtain the basic information for establishment of standard guidelines in the design and installation of roof ventilation system in single-span plastic greenhouse. To achieve this, the greenhouse structure & characteristics, cultivation status, and ventilation system were investigated for single-span greenhouse with roof ventilation system cultivating the Cucurbitaceae vegetables, watermelon, cucumber, and oriental melon. Most of single-span watermelon greenhouse in Haman and Buyeo area were a hoop-style and the ventilation system in those greenhouses mostly consisted of two different types of 'roof vent (circular or chimney type) + side vent (hole) + fan' and 'roof vent (circular type) + side vent (hole or roll-up type)'. The diameter of circular and chimney-type vent was mostly 60cm and the average number of vents was 10.5 per a bay with vent spacing of average 6.75m. The ratio of roof vent area to floor area and side vent area in the single-span watermelon greenhouse with ventilation fan were 0.46% and 7.6%, respectively. The single-span cucumber greenhouse in Haman and Changnyeong area were a gable roof type, such as even span, half span, three quarter and the 70.6% of total investigated single-span greenhouses was equipped with a roof ventilation fan while 58.8% had a circulation fan inside the greenhouse. The ratios of roof vent area to floor area in the single-span cucumber greenhouse ranged from 0.61 to 0.96% and in the case of the square roof vent, were higher than that of the circular type vent. On average, the roof ventilation fan in single-span cucumber greenhouse was equipped with the power input of 210W and maximum air volume of $85.0m^3/min$, and the number of fans was 9.75 per a bay. The number of roof vent of single-span oriental melon greenhouse with only roll-up type side vent ranged from 8 to 21 (average 14.8), which was higher than that of other Cucurbitaceae vegetables while the vent number of the greenhouse with a roof ventilation fan was average 7 per a bay.

밀폐공간에서 파열면에 따른 가스폭발특성에 관한 연구 (A study on the characteristics of gas explosion with vent area)

  • 김상섭;채재우;조영도;장기현
    • 한국가스학회지
    • /
    • 제7권4호
    • /
    • pp.53-60
    • /
    • 2003
  • 보통 가정이나 건물에서 화재 및 가스에 의한 사고 중에 가스의 폭발에 의한 사고는 폭발과 동시에 발생하는 압력 때문에 발생하는 건물의 붕괴로서 많은 인명피해 및 재산상의 손해를 가져온다. 이와 같은 2차적인 피해를 막기 위해 본 연구에서는 건물의 폭발시 발생하는 개구부의 크기 및 형태에 따른 모델을 선정하여 건물의 체적대비 개구부 면적에 따른 압력변화를 실험을 통하여 개구부의 면적 비를 도출하였으며, 개구부 형태에 따른 압력실험을 통하여 최소의 압력으로 피해을 막을 수 있는 모델을 선정하였다. 이를 이용하여 건물의 설계시 안전율을 고려하여 개구부의 면적 및 형태를 선정함으로써 2차 피해를 예방할 수 있을 것으로 판단된다.

  • PDF

청과물상자의 통기공 및 상자적재방법이 정압강하에 미치는 영향 (The Effect of Air Vent Holes and Stacking Methods of Fruits and Vegetables Boxes on Static Pressure Drop in Pressure Cooling System)

  • 김의웅;김병삼;남궁배;정진웅;김동철;금동혁
    • Journal of Biosystems Engineering
    • /
    • 제20권4호
    • /
    • pp.360-367
    • /
    • 1995
  • The effect of air vent holes, stacking methods of boxes and clearance between boxes on static pressure drop, were measured to design of pressure cooling system. Static pressure drops in air vent hole of carton box were measured for different hole opening ratio from 1% to 5%. Static pressure drop was expressed as a function of superficial velocity as second-degree polynomial. At given static pressure in plenum chamber, static pressure drop in boxes was shown as second-degree polynomial of the number of carton box in series stacking method, as first-degree polynomial in height and parallel stacking method. In pressure cooling of 24 boxes of Tsugaru apple, air flow rates through clearance between the boxes were shown 1.27 and 1.65 times than those of through the inside of boxes at the plenum pressure of 10mmAq and 20mmAq, respectively.

  • PDF

RESISTANCE TO AIR FLOW OF FRUITS IN BULK AND IN A CARTON

  • Yun, Hong-Sun;Cho, Young-Kil;Park, Kyung-Kyu
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 1996년도 International Conference on Agricultural Machinery Engineering Proceedings
    • /
    • pp.896-905
    • /
    • 1996
  • Pressure drop, as a function of air flow, was measured for tomatoes and mandarins in bulk with different sizes, stacking arrangements and bed porosities. Pressure drop was also measured on carton vent holes and on a carton of packed fruits . and the cumulative effects of air flow resistance of vent holes and packed fruits in bulk on the air flow resistance of a carton of fruits were evaluated . Equation were presented to describe pressure drop bulk fruits, of an empty carton and of a carton of packed fruits as related to the air velocity , the bed porosity, the fruit diameter and the opening ratio of the vent hole.

  • PDF