• Title/Summary/Keyword: veneers

Search Result 103, Processing Time 0.021 seconds

Densification Characteristics of Softwood Veneers Treated by Resin Impregnation (침엽수단판의 수지함침처리에 의한 압밀화 특성)

  • 서진석
    • Journal of the Korea Furniture Society
    • /
    • v.14 no.2
    • /
    • pp.21-29
    • /
    • 2003
  • This study was carried out to investigate characteristics of plywood overlaid with softwood veneers densified by resin impregnation and compression. The resin impregnability of Korean pine veneer under atmospheric pressure soaking was greater than that of larch, and impregnability of melamine resin was slightly greater than phenolic resin. It was suggested that resin impregnation ratio was affected by density and thickness of veneer. The largest melamine resin impregnation ratio of 50.7% was obtained with 1.26mm thick Korean pine veneer, and the lowest phenolic resin impregnation ratio of 11.7% with 3.41mm thick larch veneer. Therefore, it was suggested that the vacuum-pres sure-soak treatment is required at thick larch veneer. In densifying resin-impregnated veneers, densification ratio from 13.4 to 31.2% was obtained by high pressure from 15.6 to $20.8kgf/cm^2$. Impregnation of melamine resin also showed relatively greater at densification than that of phenolic resin. So it showed the degree of densification of about 20% or greater. It was seemed that adhesive bonding strength of plywood(base panel) which was directly pressed and overlaid with resin-impregnated veneer was affected by resin tackiness after resin impregnation followed by semi-drying. In laboratory scale, melamine resin impregnation was more favorable for the development of adhesive bonding strength owing to moisture control.

  • PDF

In vitro evaluation of the fracture resistance and microleakage of porcelain laminate veneers bonded to teeth with composite fillings after cyclic loading

  • Sadighpour, Leyla;Geramipanah, Farideh;Allahyari, Somayeh;Sichani, Babak Fallahi;Fard, Mohamd Javad Kharazi
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.4
    • /
    • pp.278-284
    • /
    • 2014
  • PURPOSE. There is insufficient data regarding the durability of porcelain laminate veneers bonded to existing composite fillings. The aim of the present study was to evaluate the fracture resistance and microleakage of porcelain laminate veneers bonded to teeth with existing composite fillings. MATERIALS AND METHODS. Thirty maxillary central incisors were divided into three groups (for each group, n=10): intact teeth (NP), teeth with class III composite fillings (C3) and teeth with class IV cavities (C4). Porcelain laminate veneers were made using IPS-Empress ceramic and bonded with Panavia F2 resin cement. The microleakage of all of the specimens was tested before and after cyclic loading ($1{\times}10^6$ cycles, 1.2 Hz). The fracture resistance values (N) were measured using a universal testing machine, and the mode of failure was also examined. The statistical analyses were performed using one-way ANOVA and Tukey post hoc tests (${\alpha}=.05$). RESULTS. There was a significant difference in the mean microleakage of group C4 compared with group NT (P=.013). There was no significant difference in the fracture loads among the groups. CONCLUSION. The microleakage and failure loads of porcelain laminate veneers bonded to intact teeth and teeth with standard class III composite fillings were not significantly different.

The Characteristics of Far-infrared Radiation Drying of Decorative Veneer (무늬목 단판의 원적외석 건조 특성)

  • Lee, Nam-Ho
    • Journal of the Korean Wood Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.22-28
    • /
    • 1997
  • This research was carried out to obtain the fundamental data for the development of the technology and practical use of far-infrared radiation(IR) drying of quarter-sliced decorative veneers of walnut and red oak. The average drying rates of IR drying were about one and half to four times those of kiln drying and this tendency was prominent in thin veneer. The end wavinesses of the IR-dried veneers were smaller than those of kiln-dried veneers. These were largely recovered by the cold treatments after drying. The consumed electric power for IR drying was about one-fifth to two-fifthes compared to that for kiln drying.

  • PDF

Tensile strength of bilayered ceramics and corresponding glass veneers

  • Anunmana, Chuchai;Champirat, Tharee;Jirajariyavej, Bundhit
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.3
    • /
    • pp.151-156
    • /
    • 2014
  • PURPOSE. To investigate the microtensile bond strength between two all-ceramic systems; lithium disilicate glass ceramic and zirconia core ceramics bonded with their corresponding glass veneers. MATERIALS AND METHODS. Blocks of core ceramics (IPS e.max$^{(R)}$ Press and Lava$^{TM}$ Frame) were fabricated and veneered with their corresponding glass veneers. The bilayered blocks were cut into microbars; 8 mm in length and $1mm^2$ in cross-sectional area (n = 30/group). Additionally, monolithic microbars of these two veneers (IPS e.max$^{(R)}$ Ceram and LavaTM Ceram; n = 30/group) were also prepared. The obtained microbars were tested in tension until fracture, and the fracture surfaces of the microbars were examined with fluorescent black light and scanning electron microscope (SEM) to identify the mode of failure. One-way ANOVA and the Dunnett's T3 test were performed to determine significant differences of the mean microtensile bond strength at a significance level of 0.05. RESULTS. The mean microtensile bond strength of IPS e.max$^{(R)}$ Press/IPS e.max$^{(R)}$ Ceram ($43.40{\pm}5.51$ MPa) was significantly greater than that of Lava$^{TM}$ Frame/Lava$^{TM}$ Ceram ($31.71{\pm}7.03$ MPa)(P<.001). Fluorescent black light and SEM analysis showed that most of the tested microbars failed cohesively in the veneer layer. Furthermore, the bond strength of Lava$^{TM}$ Frame/Lava$^{TM}$ Ceram was comparable to the tensile strength of monolithic glass veneer of Lava$^{TM}$ Ceram, while the bond strength of bilayered IPS e.max$^{(R)}$ Press/IPS e.max$^{(R)}$ Ceram was significantly greater than tensile strength of monolithic IPS e.max$^{(R)}$ Ceram. CONCLUSION. Because fracture site occurred mostly in the glass veneer and most failures were away from the interfacial zone, microtensile bond test may not be a suitable test for bonding integrity. Fracture mechanics approach such as fracture toughness of the interface may be more appropriate to represent the bonding quality between two materials.

Influence of thickness and incisal extension of indirect veneers on the biomechanical behavior of maxillary canine teeth

  • Costa, Victoria Luswarghi Souza;Tribst, Joao Paulo Mendes;Uemura, Eduardo Shigueyuki;de Morais, Dayana Campanelli;Borges, Alexandre Luiz Souto
    • Restorative Dentistry and Endodontics
    • /
    • v.43 no.4
    • /
    • pp.48.1-48.13
    • /
    • 2018
  • Objectives: To analyze the influence of thickness and incisal extension of indirect veneers on the stress and strain generated in maxillary canine teeth. Materials and Methods: A 3-dimensional maxillary canine model was validated with an in vitro strain gauge and exported to computer-assisted engineering software. Materials were considered homogeneous, isotropic, and elastic. Each canine tooth was then subjected to a 0.3 and 0.8 mm reduction on the facial surface, in preparations with and without incisal covering, and restored with a lithium disilicate veneer. A 50 N load was applied at $45^{\circ}$ to the long axis of the tooth, on the incisal third of the palatal surface of the crown. Results: The results showed a mean of $218.16{\mu}strain$ of stress in the in vitro experiment, and $210.63{\mu}strain$ in finite element analysis (FEA). The stress concentration on prepared teeth was higher at the palatal root surface, with a mean value of 11.02 MPa and varying less than 3% between the preparation designs. The veneers concentrated higher stresses at the incisal third of the facial surface, with a mean of 3.88 MPa and a 40% increase in less-thick veneers. The incisal cover generated a new stress concentration area, with values over 48.18 MPa. Conclusions: The mathematical model for a maxillary canine tooth was validated using FEA. The thickness (0.3 or 0.8 mm) and the incisal covering showed no difference for the tooth structure. However, the incisal covering was harmful for the veneer, of which the greatest thickness was beneficial.

Manufacture of Rainbow-colored Veneer by Natural Dyeing

  • Suh, Jin Suk;Park, Ryeong Jae;Cho, Yeong Hee;Song, Eon Ja;Kim, Jong In;Park, Sang Bum
    • Journal of the Korea Furniture Society
    • /
    • v.26 no.3
    • /
    • pp.286-290
    • /
    • 2015
  • The wood veneers were clearly rainbow-colored with natural dyes. As shown through Korean-style jacket with stripes of multi-colors beyond traditional obang colors (red, blue, yellow, black and white colors), eco-friendly coloring methods representing Korean colors familiar from old times could be used nobly by coloring natural wood veneer being raw material of wood products. In terms of industrialization, the study to manifest korean color, substituting chemical stains such as dye and pigment, would be necessary. In order to realize this purpose, the study about economical dyeing materials and characteristics, that is, mordant, dyeing and drying techniques showing environment-friendly coloring and high coloration level ought to be followed. In addition to this, investigating discoloration transition by fading test for interior and exterior uses would have to be carried out.