• 제목/요약/키워드: velocity response spectrum

검색결과 99건 처리시간 0.019초

지중구조물 내진설계를 위한 기반면의 속도 응답스펙트럼 및 응답변위 산정기법에 대한 연구 (Evaluations of Velocity Response Spectrum of Seismic Base and Response Displacement for the Seismic Design of Underground Structures)

  • 윤종구;김동수;유제남
    • 한국지반공학회논문집
    • /
    • 제19권4호
    • /
    • pp.211-221
    • /
    • 2003
  • 지중구조물의 내진해석에 자주 이용되는 방법으로 응답변위법이 있다. 응답변위법은 정적인 해석방법으로, 이 방법의 핵심은 지진시 지중구조물 측벽에 작용하는 지반변위를 산정하는 것이다. 이때 해석대상부지의 고유주기에 해당하는 기반면의 속도 응답스펙트럼 값을 결정하는 일이 매우 중요하다. 본 연구에서는 국내 설계지반운동기준에 적합한 기반면의 속도 응답스펙트럼 산정과 지반응답해석 없이 응답변위를 신뢰성있게 산정하는 간편법에 대한 연구를 수행하였다. 해석결과 국내 내진설계 기준의 S$_A$ 지반의 지표면 가속도 응답스펙트럼을 적분하여 속도 응답스펙트럼으로 환산하는 방법과 지반을 두 개의 층으로 구분하여 지진시 지반의 응답변위를 산정하는 방법을 현업 설계에 적용할 경우 경제적으로 큰 잇점이 있을 것으로 판단된다.

지중구조물 내진설계를 위한 기반면의 속도 응답스펙트럼 및 응답변위 산정기법에 대한 연구 (Evaluation of Velocity Response Spectrum of Seismic Base and Response Displacement for the Seismic Design of Buried Structures)

  • 김동수;김동수;유제남
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 춘계 학술발표회논문집
    • /
    • pp.129-139
    • /
    • 2003
  • The response displacement method is the most frequently used method for seismic design of buried structures. This method is pseudo-static method, and the evaluations of velocity response spectrum of seismic base and response displacement of surrounding soil are the most important steps. In this study, the evaluation of velocity response spectrum of seismic base according to the Korean seismic design guide and the simple method of calculating the response displacement were studied. It was found that velocity response spectrum of seismic base can be estimated by direct integrating the ground-surface acceleration response spectrum of soil type $S_{A}$, and the evaluation of the response displacement using double cosine method assuming two layers of soil profile shows the advantages in the seismic design.n.

  • PDF

임의의 인공지진 가속도 발생에 관한 연구 -설계응답 스펙트럼에 기초하여 - (A Study On Arbitrary Artificial Earthquake Acceleration Generation -Based On Design Response Spectrum of Arbitrary Damping Value-)

  • 우운택;김영문;노재선
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1989년도 봄 학술발표회 논문집
    • /
    • pp.5-10
    • /
    • 1989
  • In this study, the basic concept of design response spectrum is briefly revi-ewed. To generate the artificial earthquake acceleration, the method of superpo-sition of cosine waves is used. Theoretical developments using F.F.T. and spect-ral density function are compared. The amplitude was derived by use of the peak factor and the phase angle is d-erived by use of Monte Carlo simulation. To smoothen the match, the calculated pseudo velocity respon-se spectrum is compared with input pseudo velocity response spectrum at a set of control frequencies. With the modified spectral density function, a new acceleration and pseudo velocity response spectrum are generat-ed.

  • PDF

Near field 지진기록 분류에 따른 특성 비교 (Response Characteristics According to the Selection Procedure of Near Field EQGMS)

  • 배미혜;한상환
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.527-532
    • /
    • 2002
  • Near field ground motions contain distinct and large amplitude pulses in both velocity and displacement. This paper investigates characteristics of near field earthquakes and their effects on seismic demands. 20 EQGMs were selected for this purpose that satisfied 5 conditions for Near field motion. Among them ten EQGMs have one distinct peak velocity pulse in the velocity time history. In this study the responsed are Linear Elastic Response Spectrum(LERS), Response Modification Factor(R) and Inelastic Response Spectrum(IRS). The effect of the selection of Near field EQGMs on these response parameters are investigated.

  • PDF

5개 중규모 지진의 속도 관측자료를 이용한 수평 응답스펙트럼 특성 분석 (Analysis of Characteristics of Horizontal Response Spectrum of Velocity Ground Motions from 5 Macro Earthquakes)

  • 김준경
    • 터널과지하공간
    • /
    • 제21권6호
    • /
    • pp.471-479
    • /
    • 2011
  • 최근 한반도 및 주변해역에서 발생한 규모 4.8 이상의 5개 중규모 지진으로부터 관측된 속도 지반운동 파형을 이용하여 수평 응답스펙트럼을 분석하고 결과를 우선 가속도 지반운동을 이용하여 얻어진 수평 응답스펙트럼, 국내 원자력 관련 구조물의 내진설계 기준, 마지막으로 국내 일반 구조물 및 건축물 내진설계기준과 각각 비교하였다. 연구에 이용된 지반운동은 수평성분 102개(NS 및 EW 성분 포함)이며 고유진동수에 따른 응답을 구하고 각각의 최대 지반 속도 값을 이용하여 정규화 분석을 수행하였다. 첫째, 가속도 응답스펙트럼과 비교한 결과 속도 응답스펙트럼 값은 특히 중간주기에서 높은 응답을 보여 주었고 이에 비해 가속도 응답스펙트럼은 특히 단주기 즉 높은 고유진동수 영역에서 높은 응답을 보여 주었다. 둘째, 국내 원자력시설물의 내진기준으로 이용되고 있는 Reg. Guide 1.60과 비교한 결과 속도 응답스펙트럼 값은 약 6-7Hz를 시작점으로 보다 낮은 장주기 영역에서 기준값을 초과하는 현상을 보여 주었다. 셋째, 500년 재래주기에 해당하는 국내 일반 구조물 및 건축물 내진설계기준인 표준 설계응답스펙트럼을 SC, SD 및 SE지반 조건과 같은 3개 지반조건과 동시에 비교한 결과 차례로 약 1.5초, 2초 및 3초에서 시작하여 보다 장주기 영역에서 국내 일반 구조물 표준 설계 응답스펙트럼값을 초과하였다. 동일한 부지에서 일반적으로 가속도 응답스펙트럼은 단주기에서 가장 큰 값을 나타내며, 속도 응답 스펙트럼은 중간주기에서 가장 크며, 마지막으로 변위 응답스펙트럼은 장주기에서 가장 큰 값을 가진다는 국외 연구결과가 국내 지반운동을 이용한 결과에서 역시 적용가능하다는 점을 확인시켜 주었다. 최근 국내에서도 건축물의 초고층화 등으로 구조물의 디자인이 기존의 단주기에 비해 중간주기 및 장주기 영역이 상대적으로 강조되고 있어 이러한 중간주기영역에서 수평 응답스펙트럼의 정보는 향후 대단히 중요하다고 할 수 있다.

A study on determination of target displacement of RC frames using PSV spectrum and energy-balance concept

  • Ucar, Taner;Merter, Onur;Duzgun, Mustafa
    • Structural Engineering and Mechanics
    • /
    • 제41권6호
    • /
    • pp.759-773
    • /
    • 2012
  • The objective of this paper is to present an energy-based method for calculating target displacement of RC structures. The method, which uses the Newmark-Hall pseudo-velocity spectrum, is called the "Pseudo-velocity Spectrum (PSVS) Method". The method is based on the energy balance concept that uses the equality of energy demand and energy capacity of the structure. First, nonlinear static analyses are performed for five, eight and ten-story RC frame structures and pushover curves are obtained. Then the pushover curves are converted to energy capacity diagrams. Seven strong ground motions that were recorded at different soil sites in Turkey are used to obtain the pseudo-acceleration and the pseudo-velocity response spectra. Later, the response spectra are idealised with the Newmark-Hall approximation. Afterwards, energy demands for the RC structures are calculated using the idealised pseudo-velocity spectrum. The displacements, obtained from the energy capacity diagrams that fit to the energy demand values of the RC structures, are accepted as the energy-based performance point of the structures. Consequently, the target displacement values determined from the PSVS Method are checked using the displacement-based successive approach in the Turkish Seismic Design Code. The results show that the target displacements of RC frame structures obtained from the PSVS Method are very close to the values calculated by the approach given in the Turkish Seismic Design Code.

Structural response analysis in time and frequency domain considering both ductility and strain rate effects under uniform and multiple-support earthquake excitations

  • Liu, Guohuan;Lian, Jijian;Liang, Chao;Zhao, Mi
    • Earthquakes and Structures
    • /
    • 제10권5호
    • /
    • pp.989-1012
    • /
    • 2016
  • The structural dynamic behavior and yield strength considering both ductility and strain rate effects are analyzed in this article. For the single-degree-of-freedom (SDOF) system, the relationship between the relative velocity and the strain rate response is deduced and the strain rate spectrum is presented. The ductility factor can be incorporated into the strain rate spectrum conveniently based on the constant-ductility velocity response spectrum. With the application of strain rate spectrum, it is convenient to consider the ductility and strain rate effects in engineering practice. The modal combination method, i.e., square root of the sum of the squares (SRSS) method, is employed to calculate the maximum strain rate of the elastoplastic multiple-degree-of-freedom (MDOF) system under uniform excitation. Considering the spatially varying ground motions, a new response spectrum method is developed by incorporating the ductility factor and strain rate into the conventional response spectrum method. In order to further analyze the effects of strain rate and ductility on structural dynamic behavior and yield strength, the cantilever beam (one-dimensional) and the triangular element (two-dimensional) are taken as numerical examples to calculate their seismic responses in time domain. Numerical results show that the permanent displacements with and without considering the strain rate effect are significantly different from each other. It is not only necessary in theory but also significant in engineering practice to take the ductility and strain rate effects into consideration.

Response spectrum analysis considering non-classical damping in the base-isolated benchmark building

  • Chen, Huating;Tan, Ping;Ma, Haitao;Zhou, Fulin
    • Structural Engineering and Mechanics
    • /
    • 제64권4호
    • /
    • pp.473-485
    • /
    • 2017
  • An isolated building, composed of superstructure and isolation system which have very different damping properties, is typically non-classical damping system. This results in inapplicability of traditional response spectrum method for isolated buildings. A multidimensional response spectrum method based on complex mode superposition is herein introduced, which properly takes into account the non-classical damping feature in the structure and a new method is developed to estimate velocity spectra from the commonly used displacement or pseudo-acceleration spectra based on random vibration theory. The error of forced decoupling method, an approximated approach, is discussed in the viewpoint of energy transfer. From the base-isolated benchmark model, as a numerical example, application of the procedure is illustrated companying with comparison study of time-history method, forced decoupling method and the proposed method. The results show that the proposed method is valid, while forced decoupling approach can't reflect the characteristics of isolated buildings and may lead to insecurity of structures.

언커플시스템의 파라메트릭 모델링 (Parametric Modelling of Uncoupled System)

  • 윤문철;김종도;김광희
    • 한국기계가공학회지
    • /
    • 제5권3호
    • /
    • pp.36-42
    • /
    • 2006
  • The analytical realization of uncoupled system was introduced in this study using times series and its spectrum analysis. The ARMAX spectra of time series methods were compared with the conventional FFT spectrum. Also, the response of second order system uncoupled was solved using the Runge-Kutta Gill method. In this numerical analysis, the displacement, velocity and acceleration were calculated. The displacement response among them was used for the power spectrum analysis. The ARMAX algorithm in time series was proved to be appropriate for the mode estimation and spectrum analysis. Using the separate response of first and second mode, each modes were calculated separately and the response of mixed modes was also analyzed for the mode estimation using several time series methods.

  • PDF

Wind power spectra for coastal area of East Jiangsu Province based on SHMS

  • Wang, Hao;Tao, Tianyou;Wu, Teng
    • Wind and Structures
    • /
    • 제22권2호
    • /
    • pp.235-252
    • /
    • 2016
  • A wind velocity power spectrum (WVPS) with high fidelity is extremely important for accurate prediction of structural buffeting response. WVPS heavily depends on the geographical locations, local terrains and topographies. Hence, field measurement of wind characteristics may be the unique way to obtain the accurate WVPS for a specific region. In this paper, a systematic analysis and discussions of existing WVPSs were performed. Six recorded strong wind data from the structural health monitoring systems (SHMS) of Runyang Suspension Bridge (RSB) and Sutong Cable-stayed Bridge (SCB) in Jiangsu Province of China were selected for analysis. The measured and pre-processed wind velocity data was first transformed from time domain to frequency domain to obtain the measured spectrum. The spectrum for each strong wind was then fitted using the nonlinear least square method and compared with both the fitted spectrum from statistical analysis and the recommended spectrum in specifications. The modified Kaimal spectrum was proved to be the "best" choice for the coastal area of East Jiangsu Province. Finally, a suitable WVPS formula fit for the coastal area of East Jiangsu Province was presented based on the modified Kaimal spectrum. Results in this study provide a more accurate and reliable WVPS for wind-resistant design of engineering structures in the coastal area of East Jiangsu Province.