• Title/Summary/Keyword: velocity power spectra

Search Result 37, Processing Time 0.019 seconds

A Study on Analysis of Beat Spectra in a Radar System (레이다 시스템에서의 비트 스펙트럼 분석에 관한 연구)

  • Lee, Jong-Gil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.10
    • /
    • pp.2187-2193
    • /
    • 2010
  • A specific radar system can be implemented more easily using the frequency modulated continuous wave comparing with the pulse Doppler radar. It also has the advantage of LPI (low probability of interception) because of the low power and wide bandwidth characteristics. These radars are usually used to cover the short range area and to obtain the high resolution measurements of the target range and velocity information. The transmitted waveform is used in the mixer to demodulate the received echo signal and the resulting beat signal can be obtained. This beat signal is analyzed using the FFT method for the purpose of clutter removal, detection of a target, extraction of velocity and range information, etc. However, for the case of short signal acquisition time, this FFT method can cause the serious leakage effect which disables the detection of weaker echo signals masked by strong side lobes of the clutter. Therefore, in this paper, the weighting window method is analyzed to suppress the strong side lobes while maintaining the proper main lobe width. Also, the results of FFT beat spectrum analysis are shown under various environments.

Analytical Formula of the Excess Noise in Homogeneous Semiconductors (균질 반도체의 과잉 잡음에 관한 해석적 식)

  • Park, Chan-Hyeong;Hong, Sung-Min;Min, Hong-Shick;Park, Young-June
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.9
    • /
    • pp.8-13
    • /
    • 2008
  • Noise in homogeneous extrinsic semiconductor samples is calculated due to distributed diffusion noise sources. As the length of the device shrinks at a fixed bias voltage, the ac-wise short-circuit noise current shows excess noise as well as thermal noise spectra. This excess noise behaves like a full shot noise when the channel length becomes very small compared with the extrinsic Debye length. For the first time, the analytic formula of the excess noise in extrinsic semiconductors from velocity-fluctuation noise sources is given for finite frequencies. This formula shows the interplay between transit time, dielectric relaxation time, and velocity relaxation time in determining the terminal noise current as well as the carrier density fluctuation. As frequency increases, the power spectral density of the excess noise rolls off. This formula sheds light on noise in nanoscale MOSFETs where quasi-ballistic transport plays an important role in carrier transport and noise.

Effects of Si cluster incorporation on properties of microcrystalline silicon thin films

  • Kim, Yeonwon;Yang, Jeonghyeon;Kang, Jun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.181-181
    • /
    • 2016
  • Hydrogenated microcrystalline silicon (${\mu}c-Si:H$) films have attracted much attention as materials of the bottom-cells in Si thin film tandem photovoltaics due to their low bandgap and excellent stability against light soaking. However, in PECVD, the source gas $SiH_4$ must be highly diluted by $H_2$, which eventually results in low deposition rate. Moreover, it is known that high-rate ${\mu}c-Si:H$ growth is usually accompanied by a large number of dangling-bond (DB) defects in the resulting films, which act as recombination centers for photoexcited carriers, leading to a deterioration in the device performance. During film deposition, Si nanoparticles generated in $SiH_4$ discharges can be incorporated into films, and such incorporation may have effects on film properties depending on the size, structure, and volume fraction of nanoparticles incorporated into films. Here we report experimental results on the effects of nonoparticles incorporation at the different substrate temperature studied using a multi-hollow discharge plasma CVD method in which such incorporation can be significantly suppressed in upstream region by setting the gas flow velocity high enough to drive nanoparticles toward the downstream region. All experiments were performed with the multi-hollow discharge plasma CVD reactor at RT, 100, and $250^{\circ}C$, respectively. The gas flow rate ratio of $SiH_4$ to $H_2$ was 0.997. The total gas pressure P was kept at 2 Torr. The discharge frequency and power were 60 MHz, 180 W, respectively. Crystallinity Xc of resulting films was evaluated using Raman spectra. The defect densities of the films were measured with electron spin resonance (ESR). The defect density of fims deposited in the downstream region (with nonoparticles) is higher defect density than that in the upstream region (without nanoparticles) at low substrate temperature of RT and $100^{\circ}C$. This result indicates that nanoparticle incorporation can change considerably their film properties depending on the substrate temperature.

  • PDF

Effects of Geometric Configuration on the Vibro-acoustic Characteristics of Radial Vibration of an Annular Disc (환형 디스크 형상이 래디얼 진동에 의한 음향방사 특성에 미치는 영향)

  • Lee, Hyeong-Ill
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.7 s.124
    • /
    • pp.596-604
    • /
    • 2007
  • This article investigates the effects of geometric configuration on the vibro-acoustic characteristics of in-plane vibration of a thick annular disc. Disc thickness and outer radius for a given inner radius are selected as independent variables having reasonable ranges. Variations in structural eigensolutions for radial modes are investigated using pre-developed analytical method. Based on these data, far-field sound pressure distributions due to the modal vibrations for a given geometry are also calculated using an analytical solution. Modal sound powers and radiation efficiencies are calculated from the far-field sound pressure distributions and vibratory velocity distributions on the radial surfaces. Based on the results explained above, the geometric configuration that minimizes modal sound radiations in a given frequency range is determined. Finally sound power and radiation efficiency spectra for a unit harmonic force from the selected geometric configuration are obtained from structural and acoustic modal data using the modal expansion technique. Multi-modal sound radiations of the optimized disc that are obtained using proposed analytical methods are confirmed with numerical results. Using the procedure introduced in this article, sound radiation due to in-plane modes within a specific frequency range can be minimized by the disc geometry modifications in a comprehensive and convenient manner.

Remote Sensing of Surface Films as a Tool for the Study of Oceanic Dynamic Processes

  • Mitnik, Leonid;Dubina, Vyacheslav;Konstantinov, Oleg;Fischenko, Vitaly;Darkin, Denis
    • Ocean and Polar Research
    • /
    • v.31 no.1
    • /
    • pp.111-119
    • /
    • 2009
  • Biogenic surface films, which are often present in coastal areas, may enhance the signatures of hydrodynamic processes in microwave, optical, and infrared imagery. We analyzed ERS-1/2 Synthetic Aperture Radar (SAR) and Envisat Advanced Synthetic Aperture Radar (ASAR) images taken over the Japan/East Sea (JES). We focused on the appearance of the contrast SAR signatures, particularly the dark features of different scales caused by various oceanic and atmospheric phenomena. Spiral eddies of different scales were detected through surface film patterns both near the coast and in the open regions of the JES in warm and cold seasons. During field experiments carried out at the Pacific Oceanological Institute (POI) Marine Station 'Cape Shults' in Peter the Great Bay, the sea surface roughness characteristics were measured during the day and night using a developed polarization spectrophotometer and various digital cameras and systems of floats. The velocity of natural and artificial slicks was estimated using video and ADCP time series of tracers deployed on the sea surface. The slopes of gravity-capillary wave power spectra varied between .4 and .5. Surface currents in the natural and artificial slicks increased with the distance from the coast, varying between 4 and 40 cm/s. The contrast of biogenic and anthropogenic slicks detected on vertical and horizontal polarization images against the background varied over a wide range. SAR images and ancillary satellite and field data were processed and analyzed using specialized GIS for marine coastal areas.

MONITORING OBSERVATIONS OF H2O AND SiO MASERS TOWARD POST-AGB STARS

  • Kim, Jaeheon;Cho, Se-Hyung;Yoon, Dong-Hwan
    • Journal of The Korean Astronomical Society
    • /
    • v.49 no.6
    • /
    • pp.261-288
    • /
    • 2016
  • We present the results of simultaneous monitoring observations of $H_2O$ $6_{1,6}-5_{2,3}$ (22GHz) and SiO J=1-0, 2-1, 3-2 maser lines (43, 86, 129GHz) toward five post-AGB (candidate) stars, using the 21-m single-dish telescopes of the Korean VLBI Network. Depending on the target objects, 7 - 11 epochs of data were obtained. We detected both $H_2O$ and SiO maser lines from four sources: OH16.1-0.3, OH38.10-0.13, OH65.5+1.3, and IRAS 19312+1950. We could not detect $H_2O$ maser emission toward OH13.1+5.1 between the late OH/IR and post-AGB stage. The detected $H_2O$ masers show typical double-peaked line profiles. The SiO masers from four sources, except IRAS 19312+1950, show the peaks around the stellar velocity as a single peak, whereas the SiO masers from IRAS 19312+1950 occur above the red peak of the $H_2O$ maser. We analyzed the properties of detected maser lines, and investigated their evolutionary state through comparison with the full widths at zero power. The distribution of observed target sources was also investigated in the IRAS two-color diagram in relation with the evolutionary stage of post-AGB stars. From our analyses, the evolutionary sequence of observed sources is suggested as OH65.5+1.3${\rightarrow}$OH13.1+5.1${\rightarrow}$OH16.1-0.3${\rightarrow}$OH38.10-0.13, except for IRAS 19312+1950. In addition, OH13.1+5.1 from which the $H_2O$ maser has not been detected is suggested to be on the gateway toward the post-AGB stage. With respect to the enigmatic object, IRAS 19312+1950, we could not clearly figure out its nature. To properly explain the unusual phenomena of SiO and $H_2O$ masers, it is essential to establish the relative locations and spatial distributions of two masers using VLBI technique. We also include the $1.2-160{\mu}m$ spectral energy distribution using photometric data from the following surveys: 2MASS, WISE, MSX, IRAS, and AKARI (IRC and FIS). In addition, from the IRAS LRS spectra, we found that the depth of silicate absorption features shows significant variations depending on the evolutionary sequence, associated with the termination of AGB phase mass-loss.

Positron Annihilation Spectroscopy of Active Galactic Nuclei

  • Doikov, Dmytry N.;Yushchenko, Alexander V.;Jeong, Yeuncheol
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.1
    • /
    • pp.21-33
    • /
    • 2019
  • This paper focuses on the interpretation of radiation fluxes from active galactic nuclei. The advantage of positron annihilation spectroscopy over other methods of spectral diagnostics of active galactic nuclei (therefore AGN) is demonstrated. A relationship between regular and random components in both bolometric and spectral composition of fluxes of quanta and particles generated in AGN is found. We consider their diffuse component separately and also detect radiative feedback after the passage of high-velocity cosmic rays and hard quanta through gas-and-dust aggregates surrounding massive black holes in AGN. The motion of relativistic positrons and electrons in such complex systems produces secondary radiation throughout the whole investigated region of active galactic nuclei in form of cylinder with radius R= 400-1000 pc and height H=200-400 pc, thus causing their visible luminescence across all spectral bands. We obtain radiation and electron energy distribution functions depending on the spatial distribution of the investigated bulk of matter in AGN. Radiation luminescence of the non-central part of AGN is a response to the effects of particles and quanta falling from its center created by atoms, molecules and dust of its diffuse component. The cross-sections for the single-photon annihilation of positrons of different energies with atoms in these active galactic nuclei are determined. For the first time we use the data on the change in chemical composition due to spallation reactions induced by high-energy particles. We establish or define more accurately how the energies of the incident positron, emitted ${\gamma}-quantum$ and recoiling nucleus correlate with the atomic number and weight of the target nucleus. For light elements, we provide detailed tables of all indicated parameters. A new criterion is proposed, based on the use of the ratio of the fluxes of ${\gamma}-quanta$ formed in one- and two-photon annihilation of positrons in a diffuse medium. It is concluded that, as is the case in young supernova remnants, the two-photon annihilation tends to occur in solid-state grains as a result of active loss of kinetic energy of positrons due to ionisation down to thermal energy of free electrons. The single-photon annihilation of positrons manifests itself in the gas component of active galactic nuclei. Such annihilation occurs as interaction between positrons and K-shell electrons; hence, it is suitable for identification of the chemical state of substances comprising the gas component of the investigated media. Specific physical media producing high fluxes of positrons are discussed; it allowed a significant reduction in the number of reaction channels generating positrons. We estimate the brightness distribution in the ${\gamma}-ray$ spectra of the gas-and-dust media through which positron fluxes travel with the energy range similar to that recorded by the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) research module. Based on the results of our calculations, we analyse the reasons for such a high power of positrons to penetrate through gas-and-dust aggregates. The energy loss of positrons by ionisation is compared to the production of secondary positrons by high-energy cosmic rays in order to determine the depth of their penetration into gas-and-dust aggregations clustered in active galactic nuclei. The relationship between the energy of ${\gamma}-quanta$ emitted upon the single-photon annihilation and the energy of incident electrons is established. The obtained cross sections for positron interactions with bound electrons of the diffuse component of the non-central, peripheral AGN regions allowed us to obtain new spectroscopic characteristics of the atoms involved in single-photon annihilation.