• 제목/요약/키워드: velocity excitation

검색결과 237건 처리시간 0.024초

Robust multi-objective optimization of STMD device to mitigate buildings vibrations

  • Pourzeynali, Saeid;Salimi, Shide;Yousefisefat, Meysam;Kalesar, Houshyar Eimani
    • Earthquakes and Structures
    • /
    • 제11권2호
    • /
    • pp.347-369
    • /
    • 2016
  • The main objective of this paper is the robust multi-objective optimization design of semi-active tuned mass damper (STMD) system using genetic algorithms and fuzzy logic. For optimal design of this system, it is required that the uncertainties which may exist in the system be taken into account. This consideration is performed through the robust design optimization (RDO) procedure. To evaluate the optimal values of the design parameters, three non-commensurable objective functions namely: normalized values of the maximum displacement, velocity, and acceleration of each story level are considered to minimize simultaneously. For this purpose, a fast and elitist non-dominated sorting genetic algorithm (NSGA-II) approach is used to find a set of Pareto-optimal solutions. The torsional effects due to irregularities of the building and/or unsymmetrical placements of the dampers are taken into account through the 3-D modeling of the building. Finally, the comparison of the results shows that the probabilistic robust STMD system is capable of providing a reduction of about 52%, 42.5%, and 37.24% on the maximum displacement, velocity, and acceleration of the building top story, respectively.

The Spectra Investigation of the Halo Planetary Nebula BoBn 1

  • Hyung, Siek;Otsuka, Masaaki;Tajitsu, Akito;Izumiura, Hideyuki
    • 천문학회보
    • /
    • 제35권2호
    • /
    • pp.72.2-72.2
    • /
    • 2010
  • The extremely metal-poor halo planetary nebula BoBn 1 has been investigated based on IUE archive data, Subaru/HDS spectra, VLT/UVES archive data, and Spitzer/IRS spectra. We have measured a heliocentric radial velocity of $+191.6\pm1.3\;kms^{-1}$ and expansion velocity 2Vexp of $40.5\pm3.3\;kms^{-1}$ from an average over 300 lines. The estimations of C, N, O, and Ne abundances from the optical recombination lines (ORLs) and Kr, Xe, and Ba from the collisional excitation lines (CELs) are also done. We have detected 5 fluorine and several slow neutron capture elements (the s-process). The amounts of [F/H], [Kr/H], and [Xe/H] suggest that BoBn 1 is the most F-rich among F detected PNe and is a heavy s-process element rich PN. The photo-ionization models built with non-LTE theoretical stellar atmospheres indicate that the progenitor was a 1-1.5 $M_\bigstar$ that would evolve into a white dwarf with an $0.62M_{\odot}$ core mass and $0.09M_{\odot}$ ionized nebula. Careful examination implies that BoBn 1 has evolved from a binary and experienced coalescence during the evolution to become a visible PN. The elemental abundances except N could be explained by a binary model composed of $0.75M_{\odot}+1.5M_{\odot}$ stars.

  • PDF

Dynamic stability of nanocomposite Mindlin pipes conveying pulsating fluid flow subjected to magnetic field

  • Esmaeili, Hemat Ali;Khaki, Mehran;Abbasi, Morteza
    • Structural Engineering and Mechanics
    • /
    • 제67권1호
    • /
    • pp.21-31
    • /
    • 2018
  • In this work, the dynamic stability of carbon nanotubes (CNTs) reinforced composite pipes conveying pulsating fluid flow is investigated. The pipe is surrounded by viscoelastic medium containing spring, shear and damper coefficients. Due to the existence of CNTs, the pipe is subjected to a 2D magnetic field. The radial induced force by pulsating fluid is obtained by the Navier-Stokes equation. The equivalent characteristics of the nanocomposite structure are calculated using Mori-Tanaka model. Based on first order shear deformation theory (FSDT) or Mindlin theory, energy method and Hamilton's principle, the motion equations are derived. Using harmonic differential quadrature method (HDQM) in conjunction with the Bolotin's method, the dynamic instability region (DIR) of the system is calculated. The effects of different parameters such as volume fraction of CNTs, magnetic field, boundary conditions, fluid velocity and geometrical parameters of pipe are shown on the DIR of the structure. Results show that with increasing volume fraction of CNTs, the DIR shifts to the higher frequency. In addition, the DIR of the structure will be happened at lower excitation frequencies with increasing the fluid velocity.

Vibration response of the boat composite shafting having constant velocity joint during change of the operation regime

  • Shuripa, V.-A;Kim, J.-R;Kil, B.-L;Kim, Y.-H;Jeon, H.-J
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권2호
    • /
    • pp.382-392
    • /
    • 2004
  • The usage of constant velocity (CV) joint is effective for motorboats on gliding regime of the motion. During transition on the gliding when angle of the CV differs from null on driving and driven composite shafts there are moments of the second order. Excitation of oscillations of the second order moments occurs when driving shafts transmits a variable torque. which generates through CV joint a lateral moment acting on the bearing. As a result of oscillations from a resonating harmonic of a shafting the harmonic with the greater or periodically varying amplitude for power condition trough transferring to nominal power 144kW. Beating conditions coincide with third mode having frequency 45.486 Hz. In that case there is high increasing of the equivalent stresses. The forming of the stiffness of the composite material is concerned to use most orientation of the layer angle in the range of $\pm$60 degrees relatively of shaft axis. Application of that angles for layer orientation gives possibility to avoid high disturbance of the shafting for motorboat transition regime.

수중 원통형 구조물의 총 음향방사파워 예측 (Prediction of Total Acoustic Radiation Power of the Submerged Circular Cylindrical Structures)

  • 한승진;이종주;강명환
    • 한국소음진동공학회논문집
    • /
    • 제24권11호
    • /
    • pp.876-882
    • /
    • 2014
  • This study investigates an efficient method to estimate the total acoustic radiation power of submerged circular cylindrical structures. Since the acoustic radiation power of submerged vehicles can be changed during the operation, the estimation for its monitoring onboard is required to accomplish the missions. The total acoustic radiation power is estimated using the measured velocity and the calculated radiation efficiency of the surface which consists of submerged rectangular plate elements. Experiments are carried out to validate the estimation approach. Comparisons of the estimation results with the measurements show that they are in a good agreement for the mid-high frequency range and match well for the cases of different excitation locations which correspond to the different operation modes of underwater vehicles as well. Therefore, this estimation method can be applied effectively to the development of the radiated noise monitoring-system.

메탄/공기 예혼합화염의 동역학적 거동에 대한 정상초음파의 교반 효과 (Agitation Effects of an Ultrasonic Standing Wave on the Dynamic Behavior of Methane/Air Premixed Flame)

  • 서항석;이상신;김정수
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2012년도 제38회 춘계학술대회논문집
    • /
    • pp.318-323
    • /
    • 2012
  • 본 연구에서는 정상초음파와 교반하는 메탄/공기 예혼합화염의 동역학적 거동을 규명하기 위한 실험결과를 제시한다. 슐리렌 기법을 이용하여 전파하는 화염을 가시화하였고, 이미지 후처리를 통해 정상초음파 유무에 따른 화염선단의 형상 및 전파속도를 관찰하였다. 전파속도는 연소한계를 제외한 당량비에서 정상초음파장이 가진되는 경우에 더욱 증가하였으며, 화염선단의 찌그러지는 위치는 초음파 특성이 변하지 않는 한 일정하였다.

  • PDF

Low velocity impact behavior of shear deficient RC beam strengthened with CFRP strips

  • Anil, Ozgur;Yilmaz, Tolga
    • Steel and Composite Structures
    • /
    • 제19권2호
    • /
    • pp.417-439
    • /
    • 2015
  • Many methods are developed for strengthening of reinforced concrete structural members against the effects of shear. One of the commonly used methods in recent years is turned out to be bonding of fiber reinforced polymers (FRP). Impact loading is one of the important external effects on the reinforced concrete structural members during service period among the others. The determination of magnitude, the excitation time, deformations and stress due to impact loadings are complicated and rarely known. In recent year impact behavior of reinforced concrete members have been researched with experimental studies by using drop-weight method and numerical simulations are done by using finite element method. However the studies on the strengthening of structural members against impact loading are very seldom in the literature. For this reason, in this study impact behavior of shear deficient reinforced concrete beams that are strengthened with carbon fiber reinforced polymers (CFRP) strips are investigated experimentally. Compressive strength of concrete, CFRP strips spacing and impact velocities are taken as the variables in this experimental study. The acceleration due to impact loading is measured from the specimens, while velocities and displacements are calculated from these measured accelerations. RC beams are modeled with ANSYS software. Experimental result and simulations result are compared. Experimental result showed that impact behaviors of shear deficient RC beams are positively affected from the strengthening with CFRP strip. The decrease in the spacing of CFRP strips reduced the acceleration, velocity and displacement values measured from the test specimens.

Study on sloshing simulation in the independent tank for an ice-breaking LNG carrier

  • Ding, Shifeng;Wang, Gang;Luo, Qiuming
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.667-679
    • /
    • 2020
  • As the LNG carrier operates in ice covered waters, it is key to ensure the overall safety, which is related to the coupling effect of ice-breaking process and internal liquid sloshing. This paper focuses on the sloshing simulation of the ice-breaking LNG carrier, and the numerical method is proposed using Circumferential Crack Method (CCM) and Volume of Vluid (VOF) with two main key factors (velocity νx and force Fx). The ship motion analysis is carried out by CCM when the ship navigates in the ice-covered waters with a constant propulsion power. The velocity νx is gained, which is the initial excitation condition for the calculation of internal sloshing force Fx. Then, the ship motion is modified based on iterative computations under the union action of ice-breaking force and liquid sloshing load. The sloshing simulation under the LNG tank is studied with the modified ship motion. Moreover, an ice-breaking LNG ship with three-leaf type tank is used for case study. The internal LNG sloshing is simulated with three different liquid heights, including free surface shape and sloshing pressure distribution at a given moment, pressure curves at monitoring points on the bulkhead. This present method is effective to solve the sloshing simulation during ice-breaking process, which could be a good reference for the design of the polar ice-breaking LNG carrier.

MR 댐퍼 착륙장치의 택싱모드 제어기법에 대한 연구 (Study on the Taxing Mode Control of MR Damper Landing Gear)

  • 이효상;황재혁
    • 항공우주시스템공학회지
    • /
    • 제13권6호
    • /
    • pp.43-51
    • /
    • 2019
  • 택싱모드 상태에서 노면의 가진으로 발생하는 기체 가속도는 조종사와 탑승객의 탑승감을 해치는 주 요인이다. 본 논문에서는 MR댐퍼 착륙장치의 탑승감을 향상시키기 위해 제어기법을 연구하였다. 제안된 제어기법은 Skyhook Control Type2 로 기존의 스카이훅 제어와는 달리 추가적으로 상부질량가속도를 피드백 받아 제어력을 구성한다. Skyhook Control Type2는 상부질량의 속도와 가속도를 모두 고려하기 때문에 상부질량속도만을 고려하는 스카이훅 기법의 제어한계를 개선하는 효과가 있다. 시뮬레이션을 위해 범퍼형태의 노면을 활주노면으로 선정하였으며, 리커다인(RecurDyn)으로 구성한 착륙장치 모델과 시뮬링크(Simulink)로 설계한 제어기를 연동해석 하였다. 시뮬레이션을 통해, 상부질량가속도의 RMS값과 최대값을 활주속도 및 제어기법에 따라 비교 분석하여 Skyhook Control Type2에 대한 제어효과를 검증하였다.

재난 변동풍속의 최초파괴확률 평가 (Estimate of First-Passage Probability for Hazard Fluctuating Wind Velocity)

  • 오종섭;허성제
    • 한국방재안전학회논문집
    • /
    • 제6권2호
    • /
    • pp.23-30
    • /
    • 2013
  • 본 연구에서는 최근 2003년부터 2012년까지의 10년 동안 연최대평균풍속이 발생한 날의 변동풍속으로부터 최초파괴확률(FEP: first excursion probability)을 알아보기 위하여 대표지점 8개 지점을 선정하고, 선정된 각 지점에 대한 최근 10년 동안의 풍속자료는 기상청으로부터 획득했고, 90개의 앙상블 중 정규확률분포로 평가된 12개의 모집단을 선정하여, 최초파괴확률 평가를 실시하였다. 분석결과 FEP의 발생확률은 P모델이 M모델 보다 약 60-200% 크게 나타나는 사실을 알 수 있었고 지표면 10 m에서 실측된 기상청자료의 변동풍속으로부터 지상 320 m까지 추정한 변동풍속의 평균 풍속 난류강도의 수직분포를 확인할 수 있었고, 서울 대구의 경도풍 고도는 약 300 m, 나머지 지점은 약 240-280 m로 나타났고, 지표면부근에서의 난류강도는 0.72 m/s-3.3 m/s로 100 m 높이 까지는 난류강도의 변화율이 증가하는 사실을 확인할 수 있었다.