• Title/Summary/Keyword: velocity error

Search Result 1,086, Processing Time 0.029 seconds

Minimizing the Measurement Error from Gas Compositions of Gas Vent in Sanitary Landfill (쓰레기 매립지 가스 포집관에서 가스조성에 따른 계측오차의 최소화)

  • 이해승;이문형
    • Journal of environmental and Sanitary engineering
    • /
    • v.17 no.1
    • /
    • pp.28-35
    • /
    • 2002
  • A methods of minimizing the measurement error brought from gas compositions was proposed by Hot wire Anemometer which don't have measurement resistance to calculate of gas vent in sanitary landfill. It was determined measurement error to compared velocity at the center of pipe to calculate using rotor meter and density gas compositions with velocity at the center of pipe to calculate using water head indicator which don't have measurement resistance. Considering the methods of minimizing gas velocity in sanitary landfill using hot wire anemometer and rotor meter, it was found to minimize within 10% as error of gas vent in sanitary landfill.

Development of an Ultra Precision Hydrostatic Guideway Driven by a Coreless Linear Motor

  • Park Chun Hong;Oh Yoon Jin;Hwang Joo Ho;Lee Deug Woo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.2
    • /
    • pp.55-60
    • /
    • 2005
  • In order to develop the hydrostatic guideways driven by a core less linear motor for ultra precision machine tools, a prototype of guideway is designed and tested. A coreless linear DC motor with a continuous force of 156 N and a laser scale with a resolution of 0.01 ㎛ are used in the system. Experimental analysis on the static stiffness, motion errors, positioning error and its repeatability, micro step response and velocity variation of the guideway are performed. The guideway shows infinite stiffness within 50 N applied load in the feed direction, and by the motion error compensation method using the Active Controlled Capillary, 0.08 ㎛ linear motion error and 0.1 arcsec angular motion error are acquired. The guideway also reveals 0.21 ㎛ positioning error and 0.09 ㎛ repeatability, and it shows stable responses following a 0.01 ㎛ resolution step command. The velocity variation of feeding system is less than 0.6 %. From these results, it is estimated that the hydrostatic guideway driven by a coreless linear motor is very useful for the ultra precision machine tools.

Dynamic Contact Analysis Satisfying All the Compatibility Conditions on the Contact Surface (접촉면에서 모든 적합조건을 만족시키는 동적인 접촉현상의 해법)

  • 이기수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.5
    • /
    • pp.1243-1250
    • /
    • 1995
  • For the numerical solution of frictional dynamic contact problems, correct contact points and displacements are determined by iteratively reducing the displacement error vector monotonically toward zero And spurious oscillations are prevented from the solution by enforcing the velocity and acceleration compatibilities of the contact points with the corresponding error vectors. Numerical simulations are conducted to demonstrate the accuracy of the solution and the necessity of the velocity and acceleration compatibilities on the contact surface.

Analysis, Modeling and Compensation of Dynamic Imbalance Error for a Magnetically Suspended Sensitive Gyroscope

  • Xin, Chaojun;Cai, Yuanwen;Ren, Yuan;Fan, Yahong;Xu, Guofeng;Lei, Xu
    • Journal of Magnetics
    • /
    • v.21 no.4
    • /
    • pp.529-536
    • /
    • 2016
  • Magnetically suspended sensitive gyroscopes (MSSGs) provide an interesting alternative for achieving precious attitude angular measurement. To effectively reduce the measurement error caused by dynamic imbalance, this paper proposes a novel compensation method based on analysis and modeling of the error for a MSSG. Firstly, the angular velocity measurement principle of the MSSG is described. Then the analytical model of dynamic imbalance error has been established by solving the complex coefficient differential dynamic equations of the rotor. The generation mechanism and changing regularity of the dynamic imbalance error have been revealed. Next, a compensation method is designed to compensate the dynamic imbalance error and improve the measurement accuracy of the MSSG. The common issues caused by dynamic imbalance can be effectively resolved by the proposed method in gyroscopes with a levitating rotor. Comparative simulation results before and after compensation have verified the effectiveness and superiority of the proposed compensation method.

Measurement of Flow Velocity and Flow Visualization with MR PC Image (MR PC 영상을 이용한 유체 흐름 분석)

  • Kim, S.J.;Lee, D.H.;Min, B.G.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.127-130
    • /
    • 1997
  • Phase-contrast(PC) methods have been used for quantitative measurements of velocity and volume flow rate. In addition, phase contrast cine magnetic resonance imaging (MRI) combines the flow dependent contrast of PC MRI with the ability of cardiac cine imaging to produce images throughout the cardiac cycle. In this method, the through-plane velocity has been encoded generally. However, the accuracy of the flow data can be reduced by the effect of flow direction, finite slice thickness, resolution, pulsatile flow pattern, and so on. In this study we calculated the error caused by misalignment of tomographic plane and flow directon. To reduce this error and encode the velocity for more complex flow, we suggested 3 directional velocity encoding method.

  • PDF

IMU-Barometric Sensor-based Vertical Velocity Estimation Algorithm for Drift-Error Minimization (드리프트 오차 최소화를 위한 관성-기압센서 기반의 수직속도 추정 알고리즘)

  • Ji, Sung-In;Lee, Jung Keun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.11
    • /
    • pp.937-943
    • /
    • 2016
  • Vertical velocity is critical in many areas, such as the control of unmanned aerial vehicles, fall detection, and virtual reality. Conventionally, the integration of GPS (Global Positioning System) with an IMU (Inertial Measurement Unit) was popular for the estimation of vertical components. However, GPS cannot work well indoors and, more importantly, has low accuracy in the vertical direction. In order to overcome these issues, IMU-barometer integration has been suggested instead of IMU-GPS integration. This paper proposes a new complementary filter for the estimation of vertical velocity based on IMU-barometer integration. The proposed complementary filter is designed to minimize drift error in the estimated velocity by adding PID control in addition to a zero velocity update technique.

A P-type Iterative Learning Controller for Uncertain Robotic Systems (불확실한 로봇 시스템을 위한 P형 반복 학습 제어기)

  • 최준영;서원기
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.3
    • /
    • pp.17-24
    • /
    • 2004
  • We present a P-type iterative learning control(ILC) scheme for uncertain robotic systems that perform the same tasks repetitively. The proposed ILC scheme comprises a linear feedback controller consisting of position error, and a feedforward and feedback teaming controller updated by current velocity error. As the learning iteration proceeds, the joint position and velocity mrs converge uniformly to zero. By adopting the learning gain dependent on the iteration number, we present joint position and velocity error bounds which converge at the arbitrarily tuned rate, and the joint position and velocity errors converge to zero in the iteration domain within the adopted error bounds. In contrast to other existing P-type ILC schemes, the proposed ILC scheme enables analysis and tuning of the convergence rate in the iteration domain by designing properly the learning gain.

Unequal Distance Sampling Technique to Design Velocity-Type Respiratory Air Flow Transducer (속도 계측형 호흡기류센서 설계를 위한 비균등 샘플링 기법)

  • 김경아;이태수;차은종
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.5
    • /
    • pp.351-359
    • /
    • 2004
  • Velocity-type repisratory air flow transducer measures dynamic pressure converted from air velocity based on the we1l-known Bernoulli's principle. It requires multiple velocity sampling holes on the flow plane. Measurement error theoretica1ly estimated by computer simulation was demonstrated to significantly reduce by unequally locating the velocity sampling holes. The flow plane was divided into multiple equi-area rings and the sampling holes were located on the circles also equally dividing each ring's area, which decreased measurement error down to 1/5 of the simple equi-radius ring division method. Also, less than 1 % relative error was estimated with 4 or more sampling holes. The present technique was less sensitive by <1/2 to the velocity profile change compared to the euqi-radius sampling. Therefore, the present unequal distance velocity sampling technique should be of great use to design the structure of the velocity-type respiratory air flow transducer.

Velocity Estimation of Moving Targets on the Sea Surface by Azimuth Differentials of Simulated-SAR Image

  • Yang, Chang-Su;Kim, Youn-Seop;Ouchi, Kazuo
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.3
    • /
    • pp.297-304
    • /
    • 2010
  • Since the change in Doppler centroid according to moving targets brings alteration to the phase in azimuth differential signals of synthetic aperture radar (SAR) data, one can measure the velocity of the moving targets using this effect. In this study, we will investigate theoretically measuring the velocity of an object from azimuth differential signals by using range compressed data which is the interim outcome of treatment from the simulated SAR raw data of moving targets on the background of sea clutter. Also, it will provide evaluation for the elements that affect the estimation error of velocity from a single SAR sensor. By making RADARSAT-1 simulated image as a specific case, the research includes comparisons for the means of velocity measurement classified by the directions of movement in the four following cases. 1. A case of a single target without currents, 2. A case of a single target with tidal currents of 0.5 m/s, 1 m/s, and 3 m/s, 3. A case of two targets on a same azimuth line moving in a same direction and velocity, 4. A case of a single target contiguous to land where radar backscatter is strong. As a result, when two moving targets exist in SAR image outside the range of approximately 256 pixels, the velocity of the object can be measured with high accuracy. However, when other moving targets exist in the range of approximately 128 pixels or when the target was contiguous to the land of strong backscatter coefficient (NRCS: normalized radar cross section), the estimated velocity was in error by 10% at the maximum. This is because in the process of assuming the target's location, an error occurs due to the differential signals affected by other scatterers.

Error Analysis for a Cubic Parallel Device Moving at Uniform Velocity (등속 운동을 하는 육면형 병렬기구의 오차 해석)

  • 임승룡;최우천;송재복;홍대희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.211-214
    • /
    • 2000
  • An error analysis is very important for a precision machine tool to estimate its performance. This study proposes a new parallel device, a cubic parallel manipulator. Errors of the proposed cubic parallel manipulator include universal joint errors, errors occurring due to changes in the fore directions in the links, and actuation errors. An error analysis is performed for the manipulator platform moving at uniform velocity. The analysis shows how the position and orientation of the platform influences the directional link forces that change the errors in the manipulator. The analysis shows that the method can be used in predicting the accuracy of parallel devices.

  • PDF