• Title/Summary/Keyword: velocity error

Search Result 1,085, Processing Time 0.038 seconds

A Case Study on the Cross-Well Travel-Time Tomography Regulated by the Error in the Measurement of the First Arrival Time (초동 주시 측정 오차로 제어된 공대공 주시 토모그래피 사례연구)

  • Lee, Doo-Sung
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.3
    • /
    • pp.233-238
    • /
    • 2009
  • An inversion method regulated by the error in the measurement of the first arrival time was developed, and we conducted a feasibility study by applying the method to a real cross-well seismic data. The inversion is a two-step regulation process; 1) derive the measurement error bound based on the resolution of the velocity image want to derive, and exclude the records whose picking error is larger than the error bound, 2) set the travel time residual to zero if the residual is less than the measurement error. This process prevents the trivial residuals are accumulated and contribute to the velocity-model update. Comparison of two velocity images, one by using all records and another by using the regulate inversion method, shows that the later velocity image exhibits less numerical artefacts, and it also indicates that, according to the Fermat's principle, the latter image is a more feasible velocity model.

Acceptable Velocity Errors Tolerance For Field Artillery Weapon System (야전포병 무기체계의 속도오차 허용한계)

  • Min Kye-Ryo;Bai Do-Sun
    • Journal of the military operations research society of Korea
    • /
    • v.2 no.1
    • /
    • pp.163-176
    • /
    • 1976
  • The artillery fire is characterized by great damage that can be inflicted simultaneously to an area through concentrated firing. The field artillery guns used in R.O.K. Army are generally old. Thus high values of their velocity errors cause wide dispersion of shell landings. Therefore effects of the concentrated firing is lessened. In this paper a general model which considers all error factors involved in firing in general, is established first. Then from this a basic model which includes the errors involved in concentrated firing only, such as the ballistic error, velocity error, target density function, and damage function, is extracted. Among many weapon systems now in use a specific one called gun 'A' is selected and its concentration effects are measured through computer simulation. The results show that as the velocity error of a battery increases, its target coverage capability, i. e. concentration effect, decreases. Therefore the need arises for the field artillery commander to know beforehand characteristics, i.e. velocity errors, of the guns in his unit and also to carefully examine the problem of battery arrangement with the gun characteristics in mind in order to maximize the damage effects of his artillery unit.

  • PDF

Characteristics of Uni-directional Diverter for Gravimetric Calibration Facility (액체용 중량식 유량계 교정장치의 일방향 Diverter 특성연구)

  • Nam, Ki Han;Park, Jong Ho;Kim, Hong Jip
    • The KSFM Journal of Fluid Machinery
    • /
    • v.20 no.1
    • /
    • pp.59-64
    • /
    • 2017
  • Diverter is an essential element in gravimetric calibration method of flowmeter. Error of diverter are influenced by flow velocity profile of nozzle outlet, motion velocity of diverter and detecting location. That's why, time detection position of diverter is tuned through repetitive test for minimizing error of diverter. Further the diverter must be compared with the other institutions test since the influence on the accuracy of the flow meter used in the test. In this paper, errors (flow velocity profile of nozzle outlet, motion velocity of diverter and detecting location) of diverter are decreased by produced uni-direction diverter and error of gravimetric calibration system is decreased. Uni-direction diverter is calibrated by gravimetric calibration system with precision flowmeter, the flowmeter is calibrated by pipe prover and other institutions and uni-direction diverter is evaluated. Uni-direction diverter is not influenced by flow velocity profile of nozzle outlet, motion velocity of diverter and detecting location. As a result, Uni-direction diverter can calibrate in wider scope since increasing ratio of maximum and minimum flow rate of uni-direction diverter.

Mean Velocity Distribution of Natural Stream using Entropy Concept in Jeju (엔트로피 개념을 이용한 제주도 상시하천의 평균유속분포 추정)

  • Yang, Se-Chang;Yang, Sung-Kee;Kim, Yong-Suk
    • Journal of Environmental Science International
    • /
    • v.28 no.6
    • /
    • pp.535-544
    • /
    • 2019
  • We computed parameters that affect velocity distribution by applying Chiu's two-dimensional velocity distribution equation based on the theory of entropy probability and acoustic doppler current profiler (ADCP) of Jungmun-stream, Akgeun-stream, and Yeonoe-stream among the nine streams in Jeju Province between July 2011 and June 2015. In addition, velocity and flow were calculated using a surface image velocimeter to evaluate the parameters estimated in the velocity observation section of the streams. The mean error rate of flow based on ADCP velocity data was 16.01% with flow calculated using the conventional depth-averaged velocity conversion factor (0.85), 6.02% with flow calculated using the surface velocity and mean velocity regression factor, and 4.58% with flow calculated using Chiu's two-dimensional velocity distribution equation. If surface velocity by a non-contact velocimeter is calculated as mean velocity, the error rate increases for large streams in the inland areas of Korea. Therefore, flow can be calculated precisely by utilizing the velocity distribution equation that accounts for stream flow characteristics and velocity distribution, instead of the conventional depth-averaged conversion factor (0.85).

Velocity Control of Permanent Magnet Synchronous Motors Using Nonlinear Sliding Manifold (영구 자석형 동기모터 속도제어를 위한 비선형 슬라이딩 매니폴드 설계)

  • Gil, Jeonghwan;Shin, Donghoon;Lee, Youngwoo;Chung, Chung Choo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.12
    • /
    • pp.1136-1141
    • /
    • 2015
  • In this paper, we develop a sliding mode controller that uses a nonlinear sliding manifold for the permanent magnet synchronous motor. The proposed controller makes sure that both currents and velocity tracking error converge into equilibria. Nonlinear sliding manifold consists of current dynamics and nonlinear functions which are designed with velocity tracking error and its integrated term. The nonlinear functions are designed to guarantee that velocity tracking error converge into zero. The closed-loop stability is proven by Lyapunov theory. The effectiveness of proposed method is demonstrated by numerical simulation results.

Weighted fuzzy controller composed of position type fuzzy controller and velocity type fuzzy controller (위치형퍼지제어기와 속도형퍼지제어기로 구성된 퍼지 가중치 제어기)

  • 김병수;박준열
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.181-183
    • /
    • 1996
  • Generally, While position type fuzzy controller has good performance in transient period, it has uniform steady state error of response. While velocity type fuzzy controller is capable of reducing steady state error of response, it is hard to develop the performance in transient period. In order to have both good performance in transient period and ability to reduce the steady state error of response, weighting fuzzy controller, which is composed of these two fuzzy controllers, is proposed. For the decision of weight to each fuzzy controller, Weighting fuzzy set is established according to the system state variables and applied to each fuzzy controller. The proposed weighted fuzzy controller has the merits of both position type fuzzy controller and velocity type fuzzy controller simultaneously.

  • PDF

Error Analysis of Flow Velocity Measured through Granular PIV Based on Interrogation Area, Frame Per Second, and Video Resolution (상관 영역과 초당 촬영 수와 해상도에 따른 Granular PIV에서의 유동 속도의 오차 분석)

  • Choi, Jongeun;Park, Junyoung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.7
    • /
    • pp.58-65
    • /
    • 2021
  • Research on general particle image velocimetry (PIV) has been conducted extensively, but studies on granular PIV are relatively insufficient. In addition, the parameters used for analyzing granular PIV need to be optimized. In this study, we analyzed the error of velocity measurements based on the interrogation area (64-192 pixel), frame per second (30-120 FPS), and video resolution [ultrahigh definition (UHD) and high definition (HD)] within the velocity range typically measured in hoppers. The estimated errors of the granular PIV were below 5%, which is generally acceptable. However, considering the data reliability, the flow velocity in the hopper could be measured with less than 5% error at 120 FPS or higher in the HD resolution and 30 FPS or higher in the UHD resolution.

Generalised Non Error-Accumulative Quantisation Algorithm with feedback loop

  • Koh, Kyoung-Chul;Choi, Byoung-Wook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1269-1274
    • /
    • 2004
  • This paper presents a new quantisation algorithm which has the closed-loop form and guarantees the boundness of accumulative error. This algorithm is particularly useful for mobile robot navigation that is usually implemented on embedded systems. If wheel commands of the mobile robot are given by velocity or positional increment at every control instant and quantised due to finite word length of controller's CPU, the quantisation error gets accumulated to causes large position error. Such an error accumulative characteristic is fatal for non wheeled mobile robots or autonomous vehicles with non-holonomic constraint. To solve this problem, we propose a non-error accumulative quantisation algorithm with closed-loop form. We also show it can be extend to a generalized form corresponding to the n-th order accumulation. The boundness of the accumulative quantisation error is investigated by a series of computer simulation. The proposed method is particularly effective to precise navigation control the autonomous mobile robots.

  • PDF

The correction of clean robot position error (청소 로봇의 위치오차 보정)

  • Yun, Dong-Woo;Oh, Sung-Nam;Kim, Kab-Il
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.533-535
    • /
    • 2006
  • Cleaning robot that is selling in present city has various cleaning algorithm. However, error of most products happens on progress direction by small obstacle that do not properly and miss cleaning thereby happens. There is robot that correct own position, but is hard to use in general home because economical strain is very big because is high price product very. In this paper measures angular velocity of robot using deviation sensor, and do to correct error using turning angular velocity and vertical angular velocity. Because detailed cleaning such as high pice style is available without addition of expensive hardware in middle and low price style cleaning product thereby, can possess price competitive power.

  • PDF

A GPS/DR Integration Scheme using Carrier Measurements (반송파 정보를 이용한 GPS/DR 통합 방법)

  • Seo, Hung-Seok;Sung, Tae-Kyung;Lee, Sang-Jeong
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.10
    • /
    • pp.1279-1286
    • /
    • 1999
  • In conventional GPS/DR integration schemes, the GPS position (or pseudo-range) information is used in calibrating DR sensors. In those schemes, however, an inaccurate calibration may degrade the position accuracy when the GPS measurement is not available. This paper presents a new integration scheme where the GPS velocity information is used in calibrating DR sensors. Also proposed is a new error model of DR sensors for calibrating the bias error and the tilt error in dynamic environments. The proposed model makes it possible that the errors of both the DR sensor parameters and the velocity are calibrated using the GPS carrier-based velocity(or the pseudo-range rate) measurement while the DR position error is calibrated using the GPS position measurement. Since the DR sensors are calibrated accurately, the positioning accuracy is drastically improved when the GPS measurements are unavailable.

  • PDF