
1. INTRODUCTION 

In the field of mobile robot control, many studies have 

been reported with issues on motion planning of mobile robots 

[1,2,3]. Mobile robots, driven by wheels on the planar surface 

are subject to nonholonomic constraints[4,5]. In motion 

planning, the simple truncation in numeric operations causes 

infinite accumulative error that is particularly critical for 

mobile robot navigation [6,7]. The quantisation usually comes 

from the finite word length of CPU or the limited sensor 

resolution such as in rotary encoders. The quantisation error 

may be tolerable in case of directly using them. However, 

since the quantised values are velocity commands or 

incremental position commands, the accumulative error 

introduces large positional error which restricts path tracking 

of a planned path.  

It is also important for embedded real-time systems in 

which the integer computation is usually performed [8,9]. The 

hierarchical control structure of mobile robots requires an 

accumulative quantisation error reduction algorithm. In 

previous studies, issues on quantisation error reduction had 

been presented in image processing to reduce image distortion 

[10] and not focused on control engineering to reduce such an 

accumulative quantisation error. In a previous study [11], the 

overall requirements for mobile robot architecture are outlined 

in terms of control, modularity, software engineering, and 

run-time performance. Traditionally the architectures of the 

mobile robot were of a hierarchical form [12] in which 

high-rate servo control loop is performed in lower level 

controller and low-rate path tracking controller is performed in 

higher level controller. The wheel velocity commands are 

precisely computed by the path tracking controller based on 

floating point operations and transferred to wheel servo 

controller in which quantisation of the commands occurs due 

the finite word length of the embedded microprocessor.  

To reduce the accumulative error resulted from quantisation, 

we propose a new simple quantisation algorithm with 

closed-loop form. After all, it grants us more advantages than 

just use of floating command. Basically, since the algorithm is 

based on the closed-loop form, numerical overflow problem in 

internal computation can be completely eliminated.   We can 

also extend it to a generalized form corresponding up to the 

n-th order command. The mathematical error boundness of the 

algorithm can be referred to [12]. To show the validity of the 

algorithm, a series of computer simulations are performed and 

the results show that the presented algorithms works well. 

2. ACCUMULATIVE QUANTISATION ERROR 

REDUCTION ALGORITHM 

Let a conventional quantisation function )(0Q  be

0 0 0 0( ),              x Q x x x x (1)

where
0x is quantised value and is quantisation unit. 

The quantisation error is bounded by . For the path 

tracking control in wheeled mobile robot navigation system, 

let us assume the wheel velocity command ( )v k at every 

control instant is computed and its quantised value is 

transferred to wheel servo controller in which a velocity 

control loop is performed for the quantised velocity command. 

At this instant, the position error occurs due to the quantisation 

process. We can imagine that  the small errors in the wheel 

velocity control cause large positional error due to 

accumulative error that is particularly critical for 

non-holonomic mobile robot such as wheeled vehicles. Now, 

we investigate the error characteristic of the conventional 

quantisation )(0Q . Assuming no quantisation process to 

happen, the wheel position can be computed ( )p k  at 

k th control instant by simple accumulation of the velocity 

command ( )v k  as follows:  

( ) ( 1) ( )p k p k v k

Now, we consider the velocity command. The accumulative 

error due to the quantisation of )(0Q  goes to infinity as the 
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number of iteration increases.  
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In order to prevent the infinity problem of the conventional 

quantisation algorithm of )(0Q , let us consider a new 

quantisation algorithm of 
1( )Q . At each step, ( )v k  is 

quantised by the following quantisation function,  

1 0 0 1( ) ( ( )) ( ( 1)) ( ( ))v k Q p k Q p k Q v k (4)

Fig. 1 shows eqn. 4 as block diagram in digital control 

system. Using eqns. 2 and 4 the accumulative error due to the 

quantisation of Fig. 1 is bounded.  
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Fig. 1 1( )Q algorithm of the open-loop form  

However, the open-loop form of 
1( )Q causes the 

computational overflow which may happen as the number of 

sequence increases since ( )p k  is computed by eqn. 2. 

To solve this overflow problem of internal computation, we 

convert
1( )Q into closed-loop form as follows:        

1 0( ) ( ( ))v k Q z k                                     (6) 

0( ) ( 1) ( ) ( ( 1))z k z k v k Q z k .                   (7) 

This algorithm can be described as control block diagram in 

Fig. 2.  
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Fig. 2 
1( )Q algorithm of the closed-loop form 

The equivalence of the closed-loop form of
1( )Q  given by 

eqns. 6 and 7 to the open-loop form of 
1( )Q of eqn. 4 can be 

seen in [12]. This algorithm also has the following 

characteristic that it does not cause internal overflow of z(k) as 

0( ) ( ) ( 1) ( ( 1))z k v k z k Q z k (8)

Therefore, we can solve the overflow problem in 

computation of eqn. 4 since ( )z k  in eqn. 7 is bounded 

within ( )v k . And the boundness of accumulative error is 

proven by verifying the equivalence of the closed form to the 

open-loop form of 
1( )Q . This is a feasible quantisation 

algorithm in embedded digital control system to reduce 

accumulative error caused by truncation. 

3. GENERALIZED QUANTISATION ERROR 

REDUCTION ALGORITHM  

When acceleration is given as a control command in motion 

planning, we should consider double accumulative error effect 

in using the quantisation algorithm. First of all, let us examine 

the double accumulative error characteristic of 
1( )Q . The 

quantisation error of 
1( )Q  is bounded by the quantisation 

value as  

1, 1( ),x Q x 1( )x Q x ,         (9)

where
1x  is a natural number and  is the quantisation 

unit. For motion planning in digital control system, the 

acceleration command ( )a k  at every control instant is 

double-accumulated as follows:  

( ) ( 1) ( )v k v k a k                             (10)

( ) ( 1) ( )p k p k v k .                            (11)

Then, the double accumulative error of the quantisation of 

1( )Q , where 
1( )Q  is the closed-loop form of eqns. 6 and 7, 

goes to infinity as the number of iteration increase as follows:  

1 0

0 0

lim( ( ) ( ( ))) lim ( ( ) ( ( ))) lim
k n k

k k k
n m n o

p k Q a m v n Q v n k

      (12)

since
1 0

0

( ( )) ( ( ))
n

m

Q a m Q v n
 by using eqn. 4.  

To solve this double accumulative infinity problem of the 

quantisation algorithm of the closed-loop form of 
1( )Q , let 

us consider the double accumulative error reduction algorithm 

of  
2 ( )Q . By extending

1( )Q , we can easily make the double 

accumulative error reduction algorithm
2 ( )Q .

Double Accumulative error Reduction Algorithm: At each step, 

( )a k is quantised by the following quantisation function 

2 ( )Q ,

2 1 1 2( ) ( ( )) ( ( 1)) ( ( ))a k Q v k Q v k Q a k (13)

Fig 3 shows eqn. 13 as block diagram in digital control 

system.  
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2 ( )Q algorithm of the open-loop form 

The double accumulative error due to the quantisation of 

Fig. 3 can be written by using eqn. 13.  
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p k Q a m p k Q v n .

 (14) 

And eqn.  14 yields eqn. 15 since 
1 0

0

( ( )) ( ( ))
k

n

Q v n Q p k
using 

eqn. 4.  

2 0
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lim( ( ) ( ( ))) lim( ( ) ( ( ))
k n

k k
n m

p k Q a m p k Q p k (15)

Therefore, the double accumulative error of 
2 ( )Q  is 

bounded by  regardless of iteration number, but the 

computational overflow may happen as the number of 

sequence increases since ( )v k  is computed by eqn. 10.  

To solve this overflow problem of the internal value, we 

change
2 ( )Q of eqn.16 into the closed-loop form structure as 

follows:      

2 1( ) ( ( ))a k Q y k (16)

1( ) ( 1) ( ) ( ( 1))y k y k a k Q y k ,           (17)

where
1( )Q is given as the closed-loop form of eqns. 6 and 

7. Including the inner block of Fig. 3, the closed-loop form of 

2 ( )Q algorithm can be descibed in digital control block 

diagram as Fig. 4. 
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2 ( )Q algorithm of the closed-loop form 

This is just equivalent to the open-loop form of 
2 ( )Q while 

it has the bounded double accumulative error characteristic.  

The equivalence of the closed-loop form quantisation given by 

eqns. 16 and 17 to the open-loop form of 
2 ( )Q of eqn. 13 can 

be also seen in [12].    

The algorithm given by eqns. 16 and 17 has the closed-loop 

form and the error is bounded within quantisation unit since it 

is equivalent to the open-loop form of 
2 ( )Q  of  eqn. 16. 

And by following equations, we can easily show that internal 

variable ( )y k  of eqn. 17 is bounded

1( ) ( ) ( 1) ( ( 1))y k a k y k Q y k

1( ) ( ) ( 1) ( ( 1))y k a k y k Q y k .              (18)

Therefore, the overflow problem in computation is solved 

since ( )y k is bounded within ( )a k . It is a feasible 

quantisation algorithm for the acceleration control system. By 

using the feature of internal recursive structure, one can easily 

extend this algorithm to n-th order quantisation algorithm 

( )nQ as  

1( ) ( ( ))n nx k Q y k (19)

1( ) ( 1) ( ) ( ( 1))ny k y k x k Q y k ,        (20)

which reveals n-th order bounded accumulative error.  

4. COMPUTER SIMULATION 

To show the validity of the proposed quantization algorithm, 

a series of the computer simulation were performed for an 

acceleration profile of mobile robot. In mobile robot 

navigation, the wheel acceleration command is computed by 

floating-point operation in the main computer and transferred 

to the wheel servo controller after quantization process [2]. To 

avoid the slippage between wheel and floor, the acceleration 

profile is designed in trapezoidal form by considering its 

maximum jerk as shown in Fig. 5.  

Fig. 5 Acceleration profile used for wheeled mobile robot 

Let us assume the acceleration command given in Fig. 5 is 

quantised by 
0 ( )Q  of eqn. 1 as shown in Fig. 6. Fig. 7 shows 

that the quantisation of the acceleration command by 

0 ( )Q of eqn. 1 cause large velocity error during the 

accumulation of the quantised values. At this time, let us 

assume that the acceleration command given in Fig. 5 is 

quantised by the closed-loop form of 
1( )Q  of eqns. 6 and 7 

as in Fig. 8. The simulation results of the open-loop form of 

1( )Q  of eqn. 4 is not describe since the results are same with 

them of the closed-loop form except the open-loop form has 

computational overflow in the internal value. 

Fig. 9 shows the velocity profile by accumulating the 

acceleration profile quantised by the closed-loop form of 

1( )Q  of eqns. 6 and 7.  The velocity profile is the first order 
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accumulation of acceleration command and it has no error. 

Fig. 6 Acceleration profile quantised by 
0 ( )Q of eqn. 1 

Fig. 7 Velocity profile generated from the acceleration 

profile quantised by 
0 ( )Q of eqn. 1 

Fig. 8 Acceleration profile Quantised by the closed-loop  

form  of 
1( )Q

Fig. 9 Velocity profile by accumulating the acceleration 

profile quantised by the closed-loop form of 
1( )Q

In Fig. 10, we depict errors between the velocity generated 

by accumulating the accelerations quantised by the 

closed-loop form of 
1( )Q  and the velocity generated by 

accumulating the original acceleration command.  Therefore, 

the velocity error is bounded. 

Fig. 10 Velocity error due to the quantised acceleration by  

the closed-loop form of
1( )Q

Even though the velocity error is bounded as shown in Fig. 

10, it can also produce large position error as predicted by eqn. 

15 in Section 3. Fig. 11 shows position error due to the double 

accumulative infinity problem of the quantisation algorithm of  

1( )Q of eqns. 6 and 7.  

Now, let us observe the simulation result of applying the 

2 ( )Q of eqns. 19 and 20 algorithm to the quantization of 

acceleration command. Fig. 12 is the acceleration profile after 

applying 
2 ( )Q algorithm. 

The velocity profile by accumulating the acceleration 

profile quantised by 
2 ( )Q  of eqns. 19 and 20 is described in 

Fig. 13. The velocity command obtained by the quantised 
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acceleration command reveals bounded error. 

Fig. 11 Position error due to the quantisation of acceleration 

 in the closed-loop form of 
1( )Q

Fig. 12 Acceleration profile Quantised by
2 ( )Q

Fig. 13 Velocity profile by accumulating the acceleration  

profile quantised by
2 ( )Q

Fig.14 shows errors between the velocity generated by 

accumulating the acceleration quantised by 
2 ( )Q  of eqns. 

19 and 20 in Fig. 12 and the velocity generated by 

accumulating the unquantised acceleration.  

Fig. 14 Velocity error due to the quantised acceleration by 

2 ( )Q  of eqns. 19 and 20 

As predicted by eqn. 18 in Section 3, the quantisation of 

2 ( )Q has the bounded double accumulative error 

characteristic. Fig.15 shows the boundness of positional error 

due to quantisation of 
2 ( )Q .

Fig. 15 Position error due to the quantisation acceleration 

by
2 ( )Q  of eqns. 19 and 20 

5. CONCLUSION 

In this paper we proposed quantization error reduction 

algorithm that is practically meaningful in control system 

implemented by embedded systems. Since the proposed 

algorithm has a closed-loop form, it can solve the internal 

overflow problem. The accumulative error boundness of the 

proposed algorithm is proven via some mathematical 

manipulations. We can also generalize the quantization 

algorithm by showing that the extension of the algorithm to 

the N-th order guarantees the error boundness of the N-th 

order accumulation. To show effectiveness of the proposed 

algorithm, a series of computer simulation were performed for 

a motion planning in which a acceleration profile is given by 

trapezoidal form. The simulation results confirm us that the 

algorithm works well.  
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