• Title/Summary/Keyword: velocity differential

Search Result 424, Processing Time 0.033 seconds

Development of Biotelemetry Method by Combining the SSBL Method and the Pinger Synchronizing Method (2) - Evaluation for Precision of System - (SSBL 방식과 핑거동기 방식을 조합한 바이오텔레메터리 방식의 개발 (2) -시스템의 정도 평가 -)

  • 박주삼;고탁창언
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.4
    • /
    • pp.318-325
    • /
    • 2003
  • The new biotelemetry method and system that the installation and the treatment of equipment is convenient and the instantaneously detailed position of the fish attached the pinger is able to track comparatively easily had been developed, an availabilities of it were verified in water tank by using hydrophone and pinger. First of all, the receiving system for biotelemetry was calibrated so as to measure tracking of high precision or wide detection range. In the next place, the precision at narrow and wide beam array of receiving system by using hydrophone was investigated and the actual position was compared with measured hydrophone position. The mean standard deviations of the position by narrow beam array of receiving system were 6.4em in phase beam of fore-aft pair and 6.3em in starboard-port pair, and the wide beam array were 24em and 23em respectively. The precision of distance, position, and velocity at narrow beam array of receiving system by using pinger were investigated and the actual values were compared with measured values. The distance from receiving system to pinger was measured by the pinger synchronizing method, angle of direction of pinger was detected by the super short base line (SSBL) method. The three dimensional position of pinger to the receiving system was measured by combining of two kinds of methods (SPB method), the velocity of pinger was obtained with a differential of the three dimensional positions. The mean standard deviations of the distance by pinger synchronizing method in narrow beam array of receiving system was 1. 8 em, that of the position by SPB method was 7.7cm.

Study on the High Pressure Combustion Performance Characteristics of the 1st Row Pintle Injector using LOx-Kerosene as Propellant (LOx와 Kerosene을 추진제로 하는 1열 핀틀 분사기의 고압 연소성능 특성에 관한 연구)

  • Kang, Donghyuk;Kim, Jonggyu;Ryu, Chulsung;Ko, Youngsung
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.5
    • /
    • pp.17-25
    • /
    • 2022
  • The pintle injector has many advantages in the key characteristics of a liquid rocket engine, such as combustion stability, combustion efficiency, and wide range of comprehensive thrust control, design and manufacture, and test fired under supercritical conditions. The pintle injector is manufactured with a rectangular, single-row orifice for thrust control and production considerations. In order to verify the combustion performance of the pintle injector and its potential as a commercial injector, the combustion characteristics were analyzed by varying the TMR (Total Momentum Ratio) and BF (Blockage Factor). The result of the hot firing test showed that the heat flux increased as TMR increased, and it confirmed that the characteristic velocity efficiency was more affected by BF than TMR. Suppose a single-row pintle injector with efficiency characteristics insensitive to changes in TMR can achieve high efficiency at low fuel differential pressure conditions. In that case, the variable pintle injector's design flexibility can be increase.

Study of Hydrodynamics and Reaction Characteristics of K-based Solid Sorbents for CO2 Capture in a Continuous System Composed of Two Bubbling Fluidized-bed Reactors (두 개의 기포유동층으로 구성된 연속장치에서 CO2 회수를 위한 K-계열 고체흡수제의 수력학적 특성 및 반응특성)

  • Kim, Ki-Chan;Kim, Kwang-Yul;Park, Young Cheol;Jo, Sung-Ho;Ryu, Ho-Jung;Yi, Chang-Keun
    • Korean Chemical Engineering Research
    • /
    • v.48 no.4
    • /
    • pp.499-505
    • /
    • 2010
  • In this study, hydrodynamics and reaction characteristic of K-based solid sorbents for $CO_2$ capture were investigated using a continuous system composed of two bubbling fluidized-bed reactors(1.2 m tall bed with 0.11 m i.d.). Potassium-based dry sorbents manufactured by the Korea Electric Power Research Institute were used, which were composed of $K_2CO_3$ of 35% for $CO_2$ absorption and supporters of 65% for mechanical strength. The continuous system consists of two bubbling fluidized-bed reactors, solid injection nozzle, riser, chiller, analyzer and heater for regeneration reaction. The minimum fluidizing velocity of the continuous system was 0.0088 m/s and the solid circulation rate measured was $10.3kg/m^2{\cdot}s$ at 1.05 m/s velocity of the solid injection nozzle. The $CO_2$ concentration of the simulated gas was about 10 vol% in dry basis. Reaction temperature in carbonator and regenerator were maintained about $70^{\circ}C$ and $200^{\circ}C$, respectively. Differential pressures, which were maintained in carbonator and regenerator, were about $415mmH_2O$ and $350mmH_2O$, respectively. In order to find out reaction characteristics of dry sorbents, several experiments were performed according to various experimental conditions such as $H_2O$ content(7.28~19.66%) in feed gas, velocity (0.053~0.103 m/s) of simulated gas, temperature($60{\sim}80^{\circ}C$) of a carbonator, temperature($150{\sim}200^{\circ}C$) of a regenerator and solid circulation rate($7.0{\sim}10.3kg/m^2{\cdot}s$). The respective data of operating variables were saved and analyzed after maintaining one hour in a stable manner. As a result of continuous operation, $CO_2$ removal tended to increase by increasing $H_2O$ content in feed gas, temperature of a regenerator and solid circulation rate and to decrease by increasing temperature of a carbonator and gas velocity in a carbonator.

Aerodynamic and Aeroelastic Tool for Wind Turbine Applications

  • Viti, Valerio;Coppotelli, Giuliano;De Pompeis, Federico;Marzocca, Pier
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.1
    • /
    • pp.30-45
    • /
    • 2013
  • The present work focuses on the unsteady aerodynamics and aeroelastic properties of a small-medium sized wind-turbine blade operating under ideal conditions. A tapered/twisted blade representative of commercial blades used in an experiment setup at the National Renewable Energy Laboratory is considered. The aerodynamic loads are computed using Computational Fluid Dynamics (CFD) techniques. For this purpose, FLUENT$^{(R)}$, a commercial finite-volume code that solves the Navier-Stokes and the Reynolds-Averaged Navier-Stokes (RANS) equations, is used. Turbulence effects in the 2D simulations are modeled using the Wilcox k-w model for validation of the CFD approach. For the 3D aerodynamic simulations, in a first approximation, and considering that the intent is to present a methodology and workflow philosophy more than highly accurate turbulent simulations, the unsteady laminar Navier-Stokes equations were used to determine the unsteady loads acting on the blades. Five different blade pitch angles were considered and their aerodynamic performance compared. The structural dynamics of the flexible wind-turbine blade undergoing significant elastic displacements has been described by a nonlinear flap-lag-torsion slender-beam differential model. The aerodynamic quasi-steady forcing terms needed for the aeroelastic governing equations have been predicted through a strip-theory based on a simple 2D model, and the pertinent aerodynamic coefficients and the distribution over the blade span of the induced velocity derived using CFD. The resulting unsteady hub loads are achieved by a first space integration of the aeroelastic equations by applying the Galerkin's approach and by a time integration using a harmonic balance scheme. Comparison among two- and three- dimensional computations for the unsteady aerodynamic load, the flap, lag and torsional deflections, forces and moments are presented in the paper. Results, discussions and pertinent conclusions are outlined.

Quantitative Analysis of Enlarged Cervical Lymph Nodes with Ultrasound Elastography

  • Zhang, Jun-Peng;Liu, Hua-Yan;Ning, Chun-Ping;Chong, Jing;Sun, Yong-Mei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.16
    • /
    • pp.7291-7294
    • /
    • 2015
  • Purpsoe: To investigate the diagnostic value of quantitative analysis of a tissue diffusion and virtual touch tissue imaging quantification (VTIQ) technique with acoustic radiation force impulse (ARFI) elastography for assessing enlarged cervical lymph nodes. Materials and Methods: Fifty-six enlarged cervical lymph nodes confirmed by pathologic diagnoses were covered in the study. According to the results of pathologic diagnosis, patients were classified into benign and malignant groups. All the patients were examined by both conventional ultrasonography and elastography. AREA% and shear wave velocity (SWV) in ROI of different groups were calculated and compared using ROC curves. Cut-off points of AREA% and SWV were determined with receiver operating characteristic curves. Results: Final histopathological results revealed 21 cases of benign and 35 cases of malignant lymph nodes. The mean values of AREA% and SWV in benign and malignant groups were $45.0{\pm}17.9%$ and $2.32{\pm}0.57m/s$, and $61.3{\pm}21.29%$ and $4.36{\pm}1.25$)m/s, respectively. For the parameters of elastography, "AREA%" and SWV demonstrated significant differences between groups (p=0.002). AREA% was positively correlated with SWV with a correlation coefficient of 0.809 (P<0.001). Conclusions: Stiffness of different lymph node diseases in patients may differ. Elastography can evaluate changes sensitively and provide valuable information to doctors. The study proved that the VTIQ elastography technique can play an important role in differential diagnosis of lymph nodes.

Changes in Cerebral Hemodynamics and Hematological Aspects Following Scuba Diving at 5 Meters of Seawater

  • Park, Mi-Ri-Nae;Hyun, Kyung-Yae;Moon, Seong-Min;Kim, Yun-Tae;Kim, Dae-Sik;Kang, Shin-Beum;Choi, Seok-Cheol
    • Biomedical Science Letters
    • /
    • v.14 no.4
    • /
    • pp.219-223
    • /
    • 2008
  • The present study was designed to clarify whether scuba diving at 5 meters of seawater influences cerebral hemodynamics, hematological and biochemical variables. Twenty healthy young men well trained scuba diving participated in this study. The blood flow velocity in the right and left middle cerebral arteries (L-MCAV and R-MCAV), blood pressure (BP), heart rate (HR), CBC and differential count, prothrombin time (PT), activated partial thromboplastin time (aPTT), biochemical variables, D-dimer and interleukin-8 (IL-8) levels were determined before, immediately after scuba diving for 30 min, and after 30 min of rest (Pre-scuba, Scuba and R-30m, respectively). L-MCAV and R-MCAV tended to increase, but the only significant increase was in L-MCAV in Scuba. SBP and HR significantly declined in R-30m compared with those of Pre-scuba and the Scuba. IL-8 levels were elevated in Scuba and R-30m compared with that of Pre-scuba. In Scuba and R-30m, hematological variables except PT and biochemical parameters excluding glucose and lactic acid did not significantly changed in comparison with those of Pre-scuba. PT level at Scuba and glucose level at R-30m significantly declined in Scuba, while lactate level at R-30m increased compared with each in Pre-scuba. However, PT level at Scuba was within a normal range. These results suggest that scuba diving at 5 m of seawater for 30 min has no adverse effects, is safe and useful for improving health. However, further study must be performed to clarify the mechanism of elevated IL-8 level following scuba diving.

  • PDF

Variation of Geomechanical Characteristics of Granite and Orthogneiss in Wonju Area due to Accelerated Artificial Chemical Weathering Tests (강원도 원주일대에 분포하는 화강암 및 화강편마암의 화학풍화실험에 의한 물성 변화 연구)

  • Woo, Ik;Um, Jeong-Gi;Park, Hyuck-Jin
    • Tunnel and Underground Space
    • /
    • v.19 no.3
    • /
    • pp.213-225
    • /
    • 2009
  • The purpose of the study is to evaluate the effects of chemical weathering on the granite and orthogneiss in Wonju area based on accelerated artificial chemical weathering. The rock samples were scrutinized the variation of index properties and ion exchanges caused by artificial chemical weathering which was implemented with leaching test for 170 days using double soxhlet extractor. The differential weathering and decrease of p wave velocity were obtained by weathering process without significant changes of porosity. In case of granite samples, the uniaxial compression strength was reduced by 20% and 16% for the F-grade and SW-grade, respectively. For MW-grade granite, however, was not able to examine the effect of strength reduction due to lack of sample number. Also, for orthogneiss, it is difficult to compare the values of uniaxial compressive strength between before and after the test because of its strong anisotropy.

Numerical Analysis for Contaminant Transport using a Dual Reactive Domain Model

  • 정대인;최종근
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.122-126
    • /
    • 2002
  • Contaminant transport in porous media is characterized by solving an advection-dispersion equation(ADE). The ADE can cover equilibrium phenomena of interest, which include sorption, decay, and chemical reactions. Among these phenomena, sorption mechanism is described by several types of sorption isotherm. If we assume the sorption isotherm as linear, the solution of ADE can be easily procured. However, if we consider the sorption isotherm as non-linear isotherm like a Dual Reactive Domain Model (DRDM), the resulting differential equation becomes non-linear. In this case, the solution of ADE cannot be easily acquired by an analytic method. In this paper, we present the numerical analysis of ADE using a DRDM. The results reveal that even if sorption data may be fitted well using linear or non-linear isotherm, the characteristics of contaminant transport of the two cases are different from each other. To be concrete, the retardation of linear isotherm has stronger effect than that of the DRDM. As the non-linearity of sorption isotherm increases, the difference of retardation effects of the two cases becomes larger. For a pulse source, the maximum concentration of the linear model is higher than that of the DRDM, but the plume of the DRDM moves faster than that of the linear model. Behaviors of contaminant transport using the DRDM are consistent with common features of a linear model. For instance, biodegradation effect becomes larger as time goes by The faster the seepage velocity is, the faster the plume of contaminant moves. The plume of the contaminant is distributed evenly over overall domain in the event of high dispersion coefficient.

  • PDF

Damped Oscill ations of the (Hard)Contact Lenses Posterior to the Blink (순목 후 콘택트(하드)렌즈의 감쇄 진동)

  • Kim, Dae-Soo
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.10 no.3
    • /
    • pp.173-184
    • /
    • 2005
  • A capillary action-induced tension develops in the tear layer between the contact lens and cornea, which leads to the restoring force due to difference in the layer thickness between either upper and lower or left and right side of the lens when it is displaced off the equilibrium position as a result of blinking. Suppose the lens was displaced a certain distance from the equilibrium position, lens starts to oscillate toward the equilibrium position with the decreasing amplitude due to the restoring force as well as the velocity dependent viscous damping force in the tear layer. A mathematical model which consists of the differential equations and their numerical solution was proposed to analyze the damped oscillations of lenses. The model predicts the time dependence of lenses after the blink varying the various parameters such as Be, diameters, masses and positions displaced from equilibrium. As the Be and mass of lens increases the rate of amplitude reduction decreases, which requires a more time for the lens to return to the equilibrium position. It seems that varying the lens' displacement and diameters affect the lens' motion very little.

  • PDF

The Ejector Design and Test for 5kW Molten Carbonate Fuel Cell (75kW 용융탄산염 연료전지 시스템의 MBOP 개발)

  • Kim, Beom-Joo;Kim, Do-Hyung;Lee, Jung-Hyun;Kang, Seung-Won;Lim, Hee-Chun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.353-356
    • /
    • 2009
  • A pivotal mechanical balance of plant for 75kW class molten carbonate fuel cells comprise of a catalytic burner and an ejector which has been designed and tested in KEPRI(Korea Electric Power Research Institute). The catalytic burner, which oxidizes residual fuel in the anode tail gas, was operated at several conditions. Some problems arose due to local overheating or auto-ignition, which could limit the catalyst life. The catalytic burner was designed by considering both gas mixing and gas velocity. Test results showed that the temperature distribution is very uniform. In addition, an ejector is a fluid machinery to be utilized for mixing fluids, maintaining vacuum, and transporting them. The ejector is placed at mixing point between the anode off gas and the cathode off gas or the fresh air Several ejectors were designed and tested to form a suction on the fuel tail gas and balance the differential pressures between anode and cathode over a range of operating conditions. The tests showed that the design of the nozzle and throat played an important role in balancing the anode tail and cathode inlet gas pressures. The 75kW MCFC system built in our ejector and catalytic burner was successfully operated from Novembe, 2008 to April, 2009. It recorded the voltage of 104V at the current of 754A and reached the maximum generating power of 78.5kW DC. The results for both stand-alone and integration into another balance of plant are discussed.

  • PDF