• Title/Summary/Keyword: velocity components

Search Result 868, Processing Time 0.032 seconds

Measurements of Turbulent Flows in the $180^{\circ}$ Curved Duct by Hot-wire Anemometer (열선유속계를 이용한 $180^{\circ}$ 곡덕트 내 난류유동의 측정)

  • Han, Seong-Ho;Kim, Won-Kap;Choi, Young-Don
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.729-734
    • /
    • 2003
  • This paper reports the characteristics of the three dimensional turbulent flow in the rectangular-sectioned 180 degree bends by Hot-wire anemometer. Grande and Kool proposed a cooling law for the measurements of the flow through the narrow passage. The authors noticed that the calibration coefficients of original method are not constant and fairly sensitive to the flow approaching angle. Measured voltages are converted to three velocity and six Reynolds stress components using the modified method in which the coefficients are treated as a function of approaching angle.

  • PDF

Effect of Flare Angle in Counter-Rotating Swirler on Swirling Flow (동축 반전 스월러의 플레어 각도변화가 스월러 유동에 미치는 영향 연구)

  • Kim, Taek Hyun;Kim, Sung Don;Jin, Yu In;Min, Seong Ki
    • Journal of the Korean Society of Combustion
    • /
    • v.21 no.1
    • /
    • pp.31-37
    • /
    • 2016
  • Swirler generates the overall swirling flow in the combustion chamber and this swirling flow governs the flame stability and enhances fuel atomization. This paper deals with the flare angle effects on flow streamlines, recirculation zone, Central Toroidal Recirculation Zone(CTRZ) and Corner Recirculation Zone(CRZ) in the model combustion chamber using counter-rotating swirler. 2D PIV system was employed to obtain the velocity components and test condition was obtained using Reynolds Analogy equivalent to air test. We observed transitional flow patterns of flare angle increased. The obtained results show that the flare angle controls the behavior of Recirculation zone, Central Toroidal Recirculation Zone and Corner Recirculation Zone.

A Study on Precision Machining Technology for Disk Cams using Bi-arc Method (Bi-arc법을 이용한 평면 캠의 정밀 가공 기술에 관한 연구)

  • Shin J.H.;Kwon S.M.;Cho I.Y.;Kim J.C.;Kang H.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.235-236
    • /
    • 2006
  • The disk cam mechanism can produce a positive motion with relatively few components. This paper introduce a shape design of cam using the relative velocity method and a precision machining technology for using Bi-arc method. The paper gives a machining information at each point using the Bi-arc method and the analysis method of the cutting error due to the moving path of the cutter, so that we can lead to the optimum design in a disk cam mechanism.

  • PDF

The Micro Structure Characteristics of Coating Layer on SM490B with HVOF Coating (HVOF용사 코팅한 SM490B 코팅층의 미시조직 특성)

  • Nam Ki-Soo;Cho Won-ik;Yoon Myung-Jin;Kim Byung-Moon
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.5
    • /
    • pp.80-86
    • /
    • 2005
  • High velocity oxy-fuel thermally sprayed coating of the WC-Co cermet material is a well-established process for modifying the surface properties of the structural components exposed to the corrosive and wear attacks. The hard WC phase in the coating resists to the wear while the soft metallic Co increases the adhesive and cohesive bonding properties. The coating properties deposited by the HVOF process are greatly dependent on the feedstock materials and processing parameters. The effects of the feedstock material and process coating parameters including the in-flight particle parameters and resultant coating microstructures were observed in this paper.

Unsteady Flow Rate Measurement Based on Distributed Parameter Pipeline Model (분포정수계 관로모델을 이용한 비정상 유량계측)

  • Kim, Do-Tae;Hong, Sung-Tae
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.3
    • /
    • pp.8-13
    • /
    • 2008
  • The paper proposes a model-based measurement of unsteady flow rate by using distributed parameter pipeline model and the measured pressure values at two distant points along the pipeline. The distributed parameter model of hydraulic pipeline is applied with consideration of frequency dependent viscosity friction and unsteady velocity distribution at a cross section of a pipeline. By using the self-diagnostics functions of the measurement method, the validity is investigated by comparison with the measured and estimated pressure and flow rate wave forms at the halfway section on the pipeline. The results show good agreement between the estimated flow rate wave forms and theoretical those under unsteady laminar flow conditions. The method proposed here is useful in estimating unsteady flow rate through an arbitrary cross section in hydraulic pipeline and components without installing an instantaneous flowmeter.

Low Attenuation Waveguide for Structural Health Monitoring with Leaky Surface Waves

  • Bezdek, M.;Joseph, K.;Tittmann, B.R.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.3
    • /
    • pp.241-262
    • /
    • 2012
  • Some applications require structural health monitoring in inaccessible components. This paper presents a technique useful for Structural Health Monitoring of double wall structures, such as double wall steam pipes and double wall pressure vessels separated from an ultrasonic transducer by three layers. Detection has been demonstrated at distances in excess of one meter for a fixed transducer. The case presented here is for one of the layers, the middle layer, being a fluid. For certain transducer configurations the wave propagating in the fluid is a wave with low velocity and attenuation. The paper presents a model based on wave theory and finite element simulation; the experimental set-up and observations, and comparison between theory and experiment. The results provide a description of the technique, understanding of the phenomenon and its possible applications in Structural Health Monitoring.

파쇄 폐타이어를 이용한 반응벽체에 관한 연구: 폐타이어 내의 MTBE(Methyl tertiary Butyl Ether) 흡착 중심

  • 박상현;이재영
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.176-179
    • /
    • 2003
  • Fuel oxygenates, such as Methyl tertiary Butyl Ether (MTBE) is additive in gasoline used to reduce air pollution. Gasoline components and fuel additives can leak form underground storage tanks. MTBE is far more water soluble than gasoline hydrocarbons like BTEX then it travels at essentially the same velocity as groundwater. MTBE in drinking water causes taste and odor problems. Therefore, the purpose of the this study is to examine the ability of ground rubber to sorb MTBE form water. The study consisted of running both batch and column tests to determine the sorption capacity and the flow through utilization efficiency of ground rubber. The result of Column test indicate that ground tire rubber has on the 36% utilization rate. Finally, it is clear that ground rubber present an attractive and relatively inexpensive sorption medium for a MTBE. The Author thought that to determine the economic costs of ground rubber utilization, the cost to sorb a given mass of contaminant by ground rubber will have to be compared to currently accepted sorption media.

  • PDF

Review of magnetic pulse welding

  • Kang, Bong-Yong
    • Journal of Welding and Joining
    • /
    • v.33 no.1
    • /
    • pp.7-13
    • /
    • 2015
  • Magnetic pulse welding(MPW) is a solid state welding process that is accomplished by a magnetic pulse causing a high-velocity impact on two materials, resulting in a true metallurgical bond. One of the great advantages of MPW is that it is suitable for joining dissimilar metals. No heat affected zones are created because of the negligible heating and the clean surfaces formation that is a consequence of the jet and the metal is not degraded. Also, compared to other general welding processes, this process leads to only a low formation of brittle intermetallic compounds However, although this process has many advantages its application to industrial fields has so far been very low. Therefore, in this study we are presenting the principles, apparatus and application of MPW for application the industrial fields.

Vibration Analysis of Pipes Considering Fluid Pulsation (유체맥동을 고려한 배관계의 진동해석)

  • Seo, Young-Soo;Jeong, Seok-Hyeon;Lee, Seong-Hyeon;Hong, Chin-Suk;Jeong, Weui-Bong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.10 s.115
    • /
    • pp.1050-1056
    • /
    • 2006
  • In this paper, a new method for the stability analysis of a pipe conveying fluid which pulsates periodically is presented. The finite element model is formulated liking into consideration of the effects of the fluid pulsating in a pipe. The damping and stiffness matrices in the finite element equation vary with time due to pulsating fluid. Coupled effects of several harmonic components in the velocity of fluid to a pipe is discussed. A new unstable region appears which will not appear in the stability analysis of single pulsating frequency. A method to directly estimate the forced response of pipe is also discussed. The results presented in this paper are verified by the time domain analysis.

Strength Design of Driveshafts for Passenger Cars (승용차용 구동축의 강도설계)

  • Jeong, Chang-Hyun;Jung, Do-Hyun;Bae, Won-Rak;Kim, Jin-Yong;Im, Jong-Soon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.114-123
    • /
    • 2007
  • We are going to propose equations for stable static and endurance strength design of driveshafts. It is very important to decide the contact normal stress of internal components of CV joints. We can estimate the strength, torque capacity, endurance life of CV joints from contact normal stress by presented equation in this paper. Besides it can be shown the equation for shaft design.