• Title/Summary/Keyword: velocity and displacement time series

Search Result 14, Processing Time 0.04 seconds

Parametric Modelling of Uncoupled System (언커플시스템의 파라메트릭 모델링)

  • Yoon, Moon-Chul;Kim, Jong-Do;Kim, Kwang-Heui
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.3
    • /
    • pp.36-42
    • /
    • 2006
  • The analytical realization of uncoupled system was introduced in this study using times series and its spectrum analysis. The ARMAX spectra of time series methods were compared with the conventional FFT spectrum. Also, the response of second order system uncoupled was solved using the Runge-Kutta Gill method. In this numerical analysis, the displacement, velocity and acceleration were calculated. The displacement response among them was used for the power spectrum analysis. The ARMAX algorithm in time series was proved to be appropriate for the mode estimation and spectrum analysis. Using the separate response of first and second mode, each modes were calculated separately and the response of mixed modes was also analyzed for the mode estimation using several time series methods.

  • PDF

Parametric Modelling of Coupled System (커플시스템의 파라메트릭 모델링)

  • Yoon, Moon-Chul;Kim, Jong-Do;Kim, Byung-Tak
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.3
    • /
    • pp.43-50
    • /
    • 2006
  • In this successive study, the analytical realization of coupled system was introduced using the times series identification and spectrum analysis, which was compared with conventional FFT spectrum. Also, the numerical responses of second order system, which is coupled, were solved using the numerical calculation of Runge-Kutta Gill method. After numerical analysis, the displacement, velocity and acceleration were acquired. Among them, the response of displacement was used for the analysis of time series spectrum. Among several time series, the ARMAX algorithm was proved to be appropriate for the spectrum analysis of the coupled system. Using the separated response of 1st and 2nd mode, the mode was calculated separately. And the responses of mixed modes were also analyzed for calculation of the mixed modes in the coupled system.

  • PDF

Optimal earthquake intensity measures for probabilistic seismic demand models of ARP1400 reactor containment building

  • Nguyen, Duy-Duan;Thusa, Bidhek;Azad, Md Samdani;Tran, Viet-Linh;Lee, Tae-Hyung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.4179-4188
    • /
    • 2021
  • This study identifies efficient earthquake intensity measures (IMs) for seismic performances and fragility evaluations of the reactor containment building (RCB) in the advanced power reactor 1400 (APR1400) nuclear power plant (NPP). The computational model of RCB is constructed using the beam-truss model (BTM) for nonlinear analyses. A total of 90 ground motion records and 20 different IMs are employed for numerical analyses. A series of nonlinear time-history analyses are performed to monitor maximum floor displacements and accelerations of RCB. Then, probabilistic seismic demand models of RCB are developed for each IM. Statistical parameters including coefficient of determination (R2), dispersion (i.e. standard deviation), practicality, and proficiency are calculated to recognize strongly correlated IMs with the seismic performance of the NPP structure. The numerical results show that the optimal IMs are spectral acceleration, spectral velocity, spectral displacement at the fundamental period, acceleration spectrum intensity, effective peak acceleration, peak ground acceleration, A95, and sustained maximum acceleration. Moreover, weakly related IMs to the seismic performance of RCB are peak ground displacement, root-mean-square of displacement, specific energy density, root-mean-square of velocity, peak ground velocity, Housner intensity, velocity spectrum intensity, and sustained maximum velocity. Finally, a set of fragility curves of RCB are developed for optimal IMs.

Time-Series Interferometric Synthetic Aperture Radar Based on Permanent Scatterers Used to Analyze Ground Stability Near a Deep Underground Expressway Under Construction in Busan, South Korea (고정산란체 기반 시계열 영상레이더 간섭기법을 활용한 부산 대심도 지하 고속화도로 건설 구간의 지반 안정성 분석)

  • Taewook Kim;Hyangsun Han;Siung Lee;Woo-Seok Kim
    • The Journal of Engineering Geology
    • /
    • v.33 no.4
    • /
    • pp.689-699
    • /
    • 2023
  • Assessing ground stability is critical to the construction of underground transportation infrastructure. Surface displacement is a key indicator of ground stability, and can be measured using interferometric synthetic aperture radar (InSAR). This study measured time-series surface displacement using permanent scatterer InSAR applied to Sentinel-1 SAR images acquired from January 2017 to June 2023 for the area around a deep underground expressway under construction to connect Mandeok-dong and Centum City in Busan, South Korea. Regions of seasonal subsidence and uplift were identified, as were regions with severe subsidence after summer 2022. To evaluate stability of the ground in the construction area, the mean displacement velocity, final surface displacement, cumulative surface displacement, and difference between minimum and maximum surface displacement were analyzed. Considering the time-series surface displacement characteristics of the study area, the difference between minimum and maximum surface displacement since June 2022 was found to be the most suitable parameter for evaluating ground stability. The results identified highly unstable ground in the construction area as being to the north of the mid-lower reaches of the Oncheon-cheon River and to the west of the Suyeong River at the point where both rivers meet, with the difference between minimum and maximum surface displacement of 40~60 mm.

Velocity Measurement System Design Based on Quantization Error Constraint

  • Katsunori, Shida;Toyonori, Matsuda
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.86.1-86
    • /
    • 2001
  • Combined with a counter, wheel or strip encoders which have equally divided markers are one of frequent measuring choices towards various applications in terms of cost, simplicity, and diversity of measurements, e.g., measuring displacement, velocity, acceleration, and so on. Often, velocity is measured by counting the series of reference clocks for a period of time which sensor-carrying device took for traveling two adjacent encoding markers. Quantizaion error of such that the disturbance caused by quantization error is under control. This paper identifies design issues, developes theory, and proposes a paradigm to design a velocity measurement system such ...

  • PDF

Ground Subsidence Measurements of Noksan National Industrial Complex using C-band Multi-temporal SAR images (C-밴드 다중시기 SAR 위성 영상을 이용한 녹산국가산업단지 일대의 지반침하 관측)

  • Cho, Minji;Lee, Chang-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.2
    • /
    • pp.161-172
    • /
    • 2014
  • Established in the lower reaches of the Nakdong river in Busan, the Noksan national industrial complex is one of the deepest soft ground areas in Korea. In case of the costal landfill having deep soft ground, there is a significant residual settlement over a long period of time. In this study, there was observed ground subsidence occurred in the Noksan national industrial complex from September 2002 to April 2007 by applying DInSAR and SBAS time series method using RADARSAT-1 and Envisat SAR datasets. As a result, it was calculated that ground subsidence developed at the velocity of about maximum 10 cm/yr and mean 6 cm/yr at the eastern center, west, western center and southern area contiguous on the coastline of the study area during the period from September 2002 to April 2007. In addition, the RADARSAT-1 average displacement map has been compared with the total displacement map observed by accurate magnetic probe extensometer during the period from 2001 to 2002. Since the time series displacement has shown a linear trend mostly, we consider that continuous monitoring should be needed until the ground subsidence of the study area has been stabilized.

New implicit higher order time integration for dynamic analysis

  • Alamatian, Javad
    • Structural Engineering and Mechanics
    • /
    • v.48 no.5
    • /
    • pp.711-736
    • /
    • 2013
  • In this paper new implicit time integration called N-IHOA is presented for dynamic analysis of high damping systems. Here, current displacement and velocity are assumed to be functions of the velocities and accelerations of several previous time steps, respectively. This definition causes that only one set of weighted factors is calculated from the Taylor series expansion which leads to a simple approach and reduce the computational efforts. Moreover a comprehensive study on stability of the proposed method i.e., N-IHOA compared with IHOA integration which is performed based on amplification matrices proves the ability of the N-IHOA in high damping vibrations such as control systems. Also, wide range of numerical examples which contains single/multi degrees of freedom, damped/un-damped, free/forced vibrations from finite element/finite difference demonstrate that the accuracy and efficiency of the proposed time integration is more than the common approaches such as the IHOA, the Wilson-${\theta}$ and the Newmark-${\beta}$.

Modeling and assessment of VWNN for signal processing of structural systems

  • Lin, Jeng-Wen;Wu, Tzung-Han
    • Structural Engineering and Mechanics
    • /
    • v.45 no.1
    • /
    • pp.53-67
    • /
    • 2013
  • This study aimed to develop a model to accurately predict the acceleration of structural systems during an earthquake. The acceleration and applied force of a structure were measured at current time step and the velocity and displacement were estimated through linear integration. These data were used as input to predict the structural acceleration at next time step. The computation tool used was the Volterra/Wiener neural network (VWNN) which contained the mathematical model to predict the acceleration. For alleviating problems of relatively large-dimensional and nonlinear systems, the VWNN model was utilized as the signal processing tool, including the Taylor series components in the input nodes of the neural network. The number of the intermediate layer nodes in the neural network model, containing the training and simulation stage, was evaluated and optimized. Discussions on the influences of the gradient descent with adaptive learning rate algorithm and the Levenberg-Marquardt algorithm, both for determining the network weights, on prediction errors were provided. During the simulation stage, different earthquake excitations were tested with the optimized settings acquired from the training stage to find out which of the algorithms would result in the smallest error, to determine a proper simulation model.

Frictional responses of concrete-to-concrete bedding planes under complex loading conditions

  • Dang, Wengang;Konietzky, Heinz;Li, Xiang
    • Geomechanics and Engineering
    • /
    • v.17 no.3
    • /
    • pp.253-259
    • /
    • 2019
  • Concrete-to-concrete bedding planes (CCBP) are observed from time to time due to the multistep hardening process of the concrete materials. In this paper, a series of direct/cyclic shear tests are performed on CCBP under static and dynamic normal load conditions to study the frictional behavior effect by the shear velocities, normal impact frequencies, horizontal shear frequencies, normal impact force amplitudes, horizontal shear displacement amplitudes and normal load levels. According to the experimental results, apparent friction coefficient k ($k=F_{Shear}/F_{Normal}$) shows different patterns under static and dynamic load conditions at the stable shear stage. k is nearly constant in direct shear tests under constant normal load conditions (DCNL), while it is cyclically changing with nearly constant peak value and valley value for the direct shear tests under dynamic normal load conditions (DDNL), where k increases with decreasing normal force and decreases with increasing normal force. Shear velocity has little influence on peak values of k for the DCNL tests, but increasing shear velocity leads to increasing valley values of k for DDNL tests. It is also found that, the valley values of k ascend with decreasing impact normal force amplitude in DDNL tests. The changing pattern of k for the cyclic shear tests under constant and dynamic normal load conditions (CCNL and CDNL tests) are similar, but the peak value of k is smaller in CDNL tests than that in CCNL tests. Normal load levels, shear displacement amplitudes, vertical impact frequencies, horizontal shear frequencies and normal impact force amplitudes have little influence on the changing pattern of k for the cyclic shear tests. The tests of this study provide useful data in understanding the frictional behavior of the CCBP under distinct loadings, and these findings are very important for analyzing the stability of the jointed geotechnical structures under complicated in situ stress conditions.

Criteria for processing response-spectrum-compatible seismic accelerations simulated via spectral representation

  • Zerva, A.;Morikawa, H.;Sawada, S.
    • Earthquakes and Structures
    • /
    • v.3 no.3_4
    • /
    • pp.341-363
    • /
    • 2012
  • The spectral representation method is a quick and versatile tool for the generation of spatially variable, response-spectrum-compatible simulations to be used in the nonlinear seismic response evaluation of extended structures, such as bridges. However, just as recorded data, these simulated accelerations require processing, but, unlike recorded data, the reasons for their processing are purely numerical. Hence, the criteria for the processing of acceleration simulations need to be tied to the effect of processing on the structural response. This paper presents a framework for processing acceleration simulations that is based on seismological approaches for processing recorded data, but establishes the corner frequency of the high-pass filter by minimizing the effect of processing on the response of the structural system, for the response evaluation of which the ground motions were generated. The proposed two-step criterion selects the filter corner frequency by considering both the dynamic and the pseudo-static response of the systems. First, it ensures that the linear/nonlinear dynamic structural response induced by the processed simulations captures the characteristics of the system's dynamic response caused by the unprocessed simulations, the frequency content of which is fully compatible with the target response spectrum. Second, it examines the adequacy of the selected estimate for the filter corner frequency by evaluating the pseudo-static response of the system subjected to spatially variable excitations. It is noted that the first step of this two-fold criterion suffices for the establishment of the corner frequency for the processing of acceleration time series generated at a single ground-surface location to be used in the seismic response evaluation of, e.g. a building structure. Furthermore, the concept also applies for the processing of acceleration time series generated by means of any approach that does not provide physical considerations for the selection of the corner frequency of the high-pass filter.