• Title/Summary/Keyword: vehicle trajectory

Search Result 386, Processing Time 0.023 seconds

Path Tracking Control of 6X6 Skid Steering Unmanned Ground Vehicle for Real Time Traversability (실시간 주행 안정성 분석을 위한 6X6 스키드 조향 무인 자율 주행 차량의 경로 추종 제어)

  • Hong, Hyosung;Han, Jong-Boo;Song, Hajun;Jung, Samuel;Kim, Sung-Soo;Yoo, Wan Suk;Won, Mooncheol;Joo, Sanghyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.7
    • /
    • pp.599-605
    • /
    • 2017
  • For an unmanned vehicle to be driven on the off-road terrain, it is necessary to consider the vehicle's stability. This paper suggests a path tracking controller for simulation of real-time vehicle stability analysis. The path tracking controller uses the preview distance to track the given trajectory. The disturbance moment is estimated using the yaw moment observer, and this information is used for compensation in the yaw moment control. On a curved path, the vehicle's desired velocity is determined from the curvature of the path. Because the vehicle is equipped with six independent motor driven wheels, the driving torques are distributed on all the wheels. The effectiveness of the path tracking controller is verified using ADAMS/MATLAB co-simulation.

A Study on the Prediction Technique of Impact Dispersion Area for Flight Safety Analysis (비행안전분석을 위한 낙하분산영역 예측 기법에 대한 연구)

  • Choi, Kyu-Sung;Sim, Hyung-Seok;Ko, Jeong-Hwan;Chung, Eui-Seung
    • Aerospace Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.177-184
    • /
    • 2014
  • Flight safety analyses concerned with Launch Vehicle are performed to measure the risk to the people, ship and aircraft using impact point and impact dispersion area of debris generated by on-trajectory failures and malfunction turns. Predictions of impact point and impact dispersion area are essential for launch vehicle's flight safety analysis. Usually, impact dispersion area can be estimated in using Monte-Carlo simulation. However, Monte-Carlo method requires more several hundreds of iterative calculations which requires quite some time to produce impact dispersion area. Herein, we check the possibility of applying JU(Julier Uhlmann) transformation and Taguchi method instead of Monte-Carlo method and we propose a best method in terms of compuational time to produce impact dispersion area by comparing the results of the three methods.

Analysis for Traffic Accidents against Car-Pedestrian on Simulation (시뮬레이션을 통한 차대 보행자의 교통사고 분석)

  • Chae, Hee-Hong;Lim, Jong-Han
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.3
    • /
    • pp.115-121
    • /
    • 2012
  • In spite of serious injuries caused by traffic accidents of car-pedestrian, the dispute is constantly occurring and economic losses and mental suffering is escalating since the cause of accidents is not scientifically identified. This study reviewed vehicle dynamics, driving dynamics, collision dynamics, traffic and road engineering for traffic accidents analysis based on traffic accidents related physically objective evidence and analysed the cause of accidents by getting results which applied vehicle initial collision velocity before collision, processing trajectory, collision stance, vehicle velocity before & after collision and parameter by using PC-Crash program. I found that skid mark and collision velocity of car-pedestrian had the error of 11.2%, 2,27% compared to theoretical values.

A Study on the Characteristics of Convective Activities related to Atmospheric Stability Index and Thunderstorms over the Naro Space Center (나로우주센터 상공의 대기 안정도지수 및 뇌운관련 대류활동 특성 연구)

  • Kim, Hong-Il;Choi, Eun-Ho;Seo, Seong-Gyu
    • Journal of Environmental Science International
    • /
    • v.28 no.12
    • /
    • pp.1133-1145
    • /
    • 2019
  • Successful launch requires state-of-the-art launch vehicle technology and constant test operations, However, the meteorological threat to the launch vehicle flight trajectory is also an important factor for launch success. Atmospheric stability above the Naro Space Center at the this time is very important, especially because the initial flight operation can determine the success of the launch. Moreover, during the flight of launch vehicle with rapid pressure and thrust into the atmosphere, convection activity in the atmosphere may create environmental conditions that cause severe weather threats such as thunderstorms. Hence, studies of atmospheric instability characteristics over the Naro Space Center are a necessary part of successful launch missions. Therefore, the main aims of this study were to (1) verify the atmospheric stability index and convection activity characteristics over the Naro Space Center using radiosonde data observed from 2007 to 2018 by the Naro Space Center, (2) analyze changes in the atmospheric stability index according to monthly and seasonal changes, and (3) assess how the calculated atmospheric stability index is related to actual thunderstorm occurrence using statistical analysis. Additionally, we aimed to investigate the atmospheric characteristics above the Naro Space Center through the distribution chart of the atmospheric stability index during summer, when convection activity is highest. Finally, we assessed the relationship between lightning occurrence and unstable atmospheric conditions, through predictability analysis performed using the lightning observation data of the Korea Meteorological Administration.

Reduction of Relative Position Error for DGPS Based Localization of AUV using LSM and Kalman Filter (최소자승법과 Kalman Filter를 이용한 AUV 의 DGPS 기반 Localization 의 위치 오차 감소)

  • Eom, Hyeon-Seob;Kim, Ji-Yen;Baek, Jun-Young;Lee, Min-Cheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.10
    • /
    • pp.52-60
    • /
    • 2010
  • It is generally important to get a precise position information for autonomous unmanned vehicle(AUV) to run safely. For getting the position of AUV, the GPS has been using to navigation in a vehicle. Though it is useful to finding a position, it is difficult to precisely control a trajectory of the AUV due to large measuring error which may reach over 10 meters. Therefore to apply AUV it needs to compensate for the error. This paper proposes a method to more precisely localize AUV using three low-cost differential global positioning systems (DGPS). The distance errors between each DGPS are minimized as using the least square method (LSM) and the Kalman filter to eliminate a Gaussian white noise. The selected DGPS is cheaper and easier to set up than the RTK-GPS. It is also more precise than the general GPS. The proposed method can compensate the relatively position error according to stationary and moving distance of the AUV. For evaluating the algorithm by simulation, the DGPS signal with the Gaussian white noise to any points is generated by the AR model and compared with the measurement signal. It is confirmed that the proposed method can effectively compensate the position error as comparing with the measurement signal. The compensated position signal can be used to localize and control the AUV in the road.

Multi-sensor Fusion Filter for the Flight Safety System of a Space Launch Vehicle (우주발사체 비행안전시스템을 위한 다중센서 융합필터 구현)

  • Ryu, Seong-Sook;Kim, Jeong-Rae;Song, Yong-Kyu;Ko, Jeong-Hwan;Choi, Kyu-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.2
    • /
    • pp.156-165
    • /
    • 2009
  • Threat due to malfunction of space launch vehicles is significant since it is bigger and flights longer range than military missiles or scientific rockets. It is necessary to implement a flight safety system to minimize the possible hazard. Design objective of the tracking filter for the flight safety system is different from conventional tracking filters since estimation reliability is more emphasized than estimation accuracy. In this paper, a fusion tracking filter was implemented for processing multi-sensor data from a space launch vehicle. The filter performance is evaluated by analyzing the error of the estimated position and instantaneous impact point. Also a fault detection algorithm is implemented to guarantee fusion filter's reliability under any sensor failure and verified to maintain stability successfully.

Underwater Navigation of AUVs Using Uncorrelated Measurement Error Model of USBL

  • Lee, Pan-Mook;Park, Jin-Yeong;Baek, Hyuk;Kim, Sea-Moon;Jun, Bong-Huan;Kim, Ho-Sung;Lee, Phil-Yeob
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.340-352
    • /
    • 2022
  • This article presents a modeling method for the uncorrelated measurement error of the ultra-short baseline (USBL) acoustic positioning system for aiding navigation of underwater vehicles. The Mahalanobis distance (MD) and principal component analysis are applied to decorrelate the errors of USBL measurements, which are correlated in the x- and y-directions and vary according to the relative direction and distance between a reference station and the underwater vehicles. The proposed method can decouple the radial-direction error and angular direction error from each USBL measurement, where the former and latter are independent and dependent, respectively, of the distance between the reference station and the vehicle. With the decorrelation of the USBL errors along the trajectory of the vehicles in every time step, the proposed method can reduce the threshold of the outlier decision level. To demonstrate the effectiveness of the proposed method, simulation studies were performed with motion data obtained from a field experiment involving an autonomous underwater vehicle and USBL signals generated numerically by matching the specifications of a specific USBL with the data of a global positioning system. The simulations indicated that the navigation system is more robust in rejecting outliers of the USBL measurements than conventional ones. In addition, it was shown that the erroneous estimation of the navigation system after a long USBL blackout can converge to the true states using the MD of the USBL measurements. The navigation systems using the uncorrelated error model of the USBL, therefore, can effectively eliminate USBL outliers without loss of uncontaminated signals.

Depth Control of Underwater Glider by Lyapunov's Direct Method (리야푸노프 직접법에 의한 수중 글라이더의 깊이 제어)

  • Joo, Moon Gab
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.2
    • /
    • pp.105-112
    • /
    • 2017
  • To control the depth of an underwater glider, a control method by using Lyapunov's direct method is proposed. The underwater glider has a torpedo-shape hull, a movable mass in the hull, and an inflatable buoyancy bag in the hull, but doesn't have large wings that increase the lift force for the conventional underwater glider. The control laws to adjust the position of the movable mass and the mass of the inflatable buoyancy bag are derived. For a selected speed and an angle of attack, we simulated the operation of the underwater glider using Matlab/Simulink. The efficiency of the proposed controller is shown in the fact that the control effort is active during only a short period of time when the zigzag trajectory is changed from downward to upward or vice versa.

Laser Welding Application in Car Body Manufacturing

  • Shin, H.O.;Chang, I.S.;Jung, C.H.
    • International Journal of Korean Welding Society
    • /
    • v.3 no.1
    • /
    • pp.2-7
    • /
    • 2003
  • Laser welding application for car body manufacturing has many advantages in the stiffness and the lightness of vehicle, the productivity of assembly line, and the degree of freedom in design. This presentation will express the innovation of car body manufacturing including parameter optimization, process modeling, and system integration. In this application the investment for systems was cut down dramatically by real time switching over the laser path between two welding stations. Points of technical discussion are as follows; optimization of parameters such as laser power, robot speed and trajectory, compact and useful design of jig & fixture to assure welding quality for 3 sheet-layer zinc-coated steel, system integration between 4㎾ Nd:YAG laser device and the other systems, on-line real time welding quality monitoring system, perfect safety standards for high power laser, minimization of consumption costs such as arc lamp, protective glass for optic, etc. This application was successfully launched mass production line in 2001. The laser-welded line of side panel consists of 122 stitches totally. And the length is about 2.4m.

  • PDF

Routing in UAV based Disruption Tolerant Networks (무인항공기 기반 지연 허용 네트워크에서의 라우팅)

  • Kim, Tea-Ho;Lim, Yu-Jin;Park, Joon-Sang
    • The KIPS Transactions:PartC
    • /
    • v.16C no.4
    • /
    • pp.521-526
    • /
    • 2009
  • Disruption/Delay Tolerant Network(DTN) is a technology for interconnecting partitioned networks. These days, DTN, especially routing in DTN, draws significant attention from the networking community. In this paper, we investigate DTN routing strategies for highly partitioned ad hoc networks where Unmanned Aerial Vehicles (UAVs) perform store-carry-forward functionality for improved network connectivity. Also we investigate UAV trajectory control mechanisms via simulation studies.