• 제목/요약/키워드: vehicle tracking

검색결과 774건 처리시간 0.032초

Directional Particle Filter Using Online Threshold Adaptation for Vehicle Tracking

  • Yildirim, Mustafa Eren;Salman, Yucel Batu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권2호
    • /
    • pp.710-726
    • /
    • 2018
  • This paper presents an extended particle filter to increase the accuracy and decrease the computation load of vehicle tracking. Particle filter has been the subject of extensive interest in video-based tracking which is capable of solving nonlinear and non-Gaussian problems. However, there still exist problems such as preventing unnecessary particle consumption, reducing the computational burden, and increasing the accuracy. We aim to increase the accuracy without an increase in computation load. In proposed method, we calculate the direction angle of the target vehicle. The angular difference between the direction of the target vehicle and each particle of the particle filter is observed. Particles are filtered and weighted, based on their angular difference. Particles with angular difference greater than a threshold is eliminated and the remaining are stored with greater weights in order to increase their probability for state estimation. Threshold value is very critical for performance. Thus, instead of having a constant threshold value, proposed algorithm updates it online. The first advantage of our algorithm is that it prevents the system from failures caused by insufficient amount of particles. Second advantage is to reduce the risk of using unnecessary number of particles in tracking which causes computation load. Proposed algorithm is compared against camshift, direction-based particle filter and condensation algorithms. Results show that the proposed algorithm outperforms the other methods in terms of accuracy, tracking duration and particle consumption.

초음파 위치 센서를 이용한 차량 로봇의 경로 추종에 관한 연구 (A Study for Path Tracking of Vehicle Robot Using Ultrasonic Positioning System)

  • 윤석민;여태경;박성재;홍섭;김상봉
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.795-800
    • /
    • 2008
  • The paper presents research for the established experiment environment of multi vehicle robot, localization algorithm that is based on vehicle control, and path tracking. The established experiment environment consists of ultrasonic positioning system, vehicle robot, server and wireless module. Ultrasonic positioning system measures positioning for using ultrasonic sensor and generates many errors because of the influence of environment such as a reflection of wall. For a solution of this fact, localization algorithm is proposed to determine a location using vehicle kinematics and selection of a reliable location data. And path tracking algorithm is proposed to apply localization algorithm and LOS, finally, that algorithms are verified via simulation and experimental

  • PDF

LPR 시스템 트리거 신호 생성을 위한 딥러닝 슬라이딩 윈도우 방식의 객체 탐지 및 추적 (Deep-learning Sliding Window Based Object Detection and Tracking for Generating Trigger Signal of the LPR System)

  • 김진호
    • 디지털산업정보학회논문지
    • /
    • 제17권4호
    • /
    • pp.85-94
    • /
    • 2021
  • The LPR system's trigger sensor makes problem occasionally due to the heave weight of vehicle or the obsolescence equipment. If we replace the hardware sensor to the deep-learning based software sensor in order to generate the trigger signal, LPR system maintenance would be a lot easier. In this paper we proposed the deep-learning sliding window based object detection and tracking algorithm for the LPR system's trigger signal generation. The gate passing vehicle's license plate recognition results are combined into the normal tracking algorithm to catch the position of the vehicle on the trigger line. The experimental results show that the deep learning sliding window based trigger signal generating performance was 100% for the gate passing vehicles including the 5.5% trigger signal position errors due to the minimum bounding box location errors in the vehicle detection process.

동적계획법을 이용한 효율적인 차량 추적 시스템에 관한 연구 (A Study on Efficient Vehicle Tracking System using Dynamic Programming Method)

  • 권희철
    • 디지털융복합연구
    • /
    • 제13권12호
    • /
    • pp.209-215
    • /
    • 2015
  • 차량 등 객체를 추적하기 위한 많은 알고리즘들이 있지만 본 논문에서 제안하는 특징점 정합 알고리즘 분야는 지수 복잡도의 시간이 걸리는 작업이다. 더구나, 차량을 추적하기 위해 기존에 제안되었던 객체 추출 등 영상 전처리 알고리즘 또한 상당한 시간을 요구한다. 따라서 본 논문에서는 도로상에서 많은 차량들의 이동 궤적을 빠르고 효율적으로 추적하기 위한 방법을 2단계로 제안한다. 1단계로 객체 탐지가 아닌 번호판 영역을 먼저 탐지한 후 특징점을 추출하는 단계하고, 2단계로 특징점들을 정합하기 위한 비용산정식을 구한 후 동적계획법을 이용하여 효율적으로 차량을 추적할 수 있는 방법을 제안한다.

차량 추적 시스템에서 차분기법을 이용한 정밀도 향상에 관한 연구 (Improvement on the Vehicle Positioning Accuracy Using Differential Method for Vehicle Tracking)

  • 장경일;이원우;길계환;김용윤;황춘식
    • 전자공학회논문지S
    • /
    • 제34S권1호
    • /
    • pp.16-25
    • /
    • 1997
  • This paper shows the development of the high accuracy vehicle positioning algorithm using the differential technique in vehicle tracking systems form the existing vehicle position which is acquired from the global positioning system (GPS). The control center receives the satellite ephemerise data and pseudorange correction from the reference station, and vehicle position from the moving vehicle. The pseudorange is calculated with the satellite position and the vehicle position, and corrected by pseudorange correction. Using this corrected pseudorange and kalman filter, more improved vehicle positioning data were obtained.

  • PDF

초음파 위치인식 시스템을 이용한 차량의 무인주행 (Unmanned Navigation of Vehicle Using the Ultrasonic Satellite System)

  • 김수용;이정민;이동활;이만형
    • 제어로봇시스템학회논문지
    • /
    • 제13권9호
    • /
    • pp.875-882
    • /
    • 2007
  • In order for a vehicle to follow a predetermined trajectory accurately, its position must be estimated accurately and reliably. In this thesis, we propose trajectory tracking control methods for unmanned vehicle and a positioning system using ultrasonic wave. The positioning problem is an important part of control problem for unmanned navigation of a vehicle. Dead Reckoning is widely used for positioning of vehicle. However this method has problems because it accumulates estimation errors. We propose a new method to increase the accuracy of position estimation using the Ultrasonic Satellite System (USAT). It is shown that we will be able to estimate the position of vehicle precisely, in which errors are not accumulated. And proposed trajectory tracking control methods include both a new path planning method and a lateral control method for vehicle. The experimental results show that the proposed methods enables exact vehicle trajectory tracking even under various environmental factors.

Vehicle detection and tracking algorithm based on improved feature extraction

  • Xiaole Ge;Feng Zhou;Shuaiting Chen;Gan Gao;Rugang Wang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권9호
    • /
    • pp.2642-2664
    • /
    • 2024
  • In the process of modern traffic management, information technology has become an important part of intelligent traffic governance. Real-time monitoring can accurately and effectively track and record vehicles, which is of great significance to modern urban traffic management. Existing tracking algorithms are affected by the environment, viewpoint, etc., and often have problems such as false detection, imprecise anchor boxes, and ID switch. Based on the YOLOv5 algorithm, we improve the loss function, propose a new feature extraction module to obtain the receptive field at different scales, and do adaptive fusion with the SGE attention mechanism, so that it can effectively suppress the noise information during feature extraction. The trained model improves the mAP value by 5.7% on the public dataset UA-DETRAC without increasing the amount of calculations. Meanwhile, for vehicle feature recognition, we adaptively adjust the network structure of the DeepSort tracking algorithm. Finally, we tested the tracking algorithm on the public dataset and in a realistic scenario. The results show that the improved algorithm has an increase in the values of MOTA and MT etc., which generally improves the reliability of vehicle tracking.

Development of Advanced Vehicle Tracking System Using the Uncertainty Processing of Past and Future Locations

  • Kim Dong Ho;Kim Jin Suk
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2004년도 학술대회지
    • /
    • pp.729-734
    • /
    • 2004
  • The e-Logistics means the virtual business activity and service architecture among the logistics companies based on the Internet technology. The management of vehicles' location in most conventional vehicle tracking system has some critical defects when it deals with data which are continuously changed. It means the conventional vehicle tracking system based on the conventional database is unable eventually to cope with the environment that should manage the frequently changed location of vehicles. The important things in the evaluation of the vehicle tracking system is to determine the threshold of cost of database ,update period and communication period between vehicles and the system. In other words, the difference between the reallocation of vehicle and the data in database can evaluate the overall performance of vehicle tracking systems. Most of the previous works considers only the information that is valid at the current time, and is hard to manage efficiently the past and future information. To overcome this problem, the efforts on moving objects management system(MOMS) and uncertainty processing have been started from a few years ago. In this paper, we propose an uncertainty processing model and system implementation of moving object that tracks the location of the vehicles. We adopted both linear-interpolation method and trigonometric function to chase up the location of vehicles for the past time as well as future time, respectively. We also explain the comprehensive examples of MOMS and uncertainty processing in parcel application that is one of major application of e-Logistics domain.

  • PDF

GPS 정보를 이용한 지능형 차량의 자율 경로추적 제어 (Autonomous Tracking Control of Intelligent Vehicle using GPS Information)

  • 정병묵;석진우;조지승;이재원
    • 한국정밀공학회지
    • /
    • 제25권10호
    • /
    • pp.58-66
    • /
    • 2008
  • In the development of intelligent vehicles, path tracking of unmanned vehicle is a basis of autonomous driving and automatic navigation. It is very important to find the exact position of a vehicle for the path tracking, and it is possible to get the position information from GPS. However the information of GPS is not the current position but the past position because a vehicle is moving and GPS has a time delay. In this paper, therefore, the moving distance of a vehicle is estimated using a direction sensor and a velocity sensor to compensate the position error of GPS. In the steering control, optimal fuzzy rules for the path tracking can be found through the simulation of Simulink. Real driving experiments show the fuzzy rules are good for the steering control and the position error of GPS is well compensated by the proposed estimation method.

다차량 추종 적응순항제어 (Multi-Vehicle Tracking Adaptive Cruise Control)

  • 문일기;이경수
    • 대한기계학회논문집A
    • /
    • 제29권1호
    • /
    • pp.139-144
    • /
    • 2005
  • A vehicle cruise control algorithm using an Interacting Multiple Model (IMM)-based Multi-Target Tracking (MTT) method has been presented in this paper. The vehicle cruise control algorithm consists of three parts; track estimator using IMM-Probabilistic Data Association Filter (PDAF), a primary target vehicle determination algorithm and a single-target adaptive cruise control algorithm. Three motion models; uniform motion, lane-change motion and acceleration motion. have been adopted to distinguish large lateral motions from longitudinal motions. The models have been validated using simulated and experimental data. The improvement in the state estimation performance when using three models is verified in target tracking simulations. The performance and safety benefits of a multi-model-based MTT-ACC system is investigated via simulations using real driving radar sensor data. These simulations show system response that is more realistic and reflective of actual human driving behavior.