KSII Transactions on Internet and Information Systems (TIIS)
/
제12권2호
/
pp.710-726
/
2018
This paper presents an extended particle filter to increase the accuracy and decrease the computation load of vehicle tracking. Particle filter has been the subject of extensive interest in video-based tracking which is capable of solving nonlinear and non-Gaussian problems. However, there still exist problems such as preventing unnecessary particle consumption, reducing the computational burden, and increasing the accuracy. We aim to increase the accuracy without an increase in computation load. In proposed method, we calculate the direction angle of the target vehicle. The angular difference between the direction of the target vehicle and each particle of the particle filter is observed. Particles are filtered and weighted, based on their angular difference. Particles with angular difference greater than a threshold is eliminated and the remaining are stored with greater weights in order to increase their probability for state estimation. Threshold value is very critical for performance. Thus, instead of having a constant threshold value, proposed algorithm updates it online. The first advantage of our algorithm is that it prevents the system from failures caused by insufficient amount of particles. Second advantage is to reduce the risk of using unnecessary number of particles in tracking which causes computation load. Proposed algorithm is compared against camshift, direction-based particle filter and condensation algorithms. Results show that the proposed algorithm outperforms the other methods in terms of accuracy, tracking duration and particle consumption.
The paper presents research for the established experiment environment of multi vehicle robot, localization algorithm that is based on vehicle control, and path tracking. The established experiment environment consists of ultrasonic positioning system, vehicle robot, server and wireless module. Ultrasonic positioning system measures positioning for using ultrasonic sensor and generates many errors because of the influence of environment such as a reflection of wall. For a solution of this fact, localization algorithm is proposed to determine a location using vehicle kinematics and selection of a reliable location data. And path tracking algorithm is proposed to apply localization algorithm and LOS, finally, that algorithms are verified via simulation and experimental
The LPR system's trigger sensor makes problem occasionally due to the heave weight of vehicle or the obsolescence equipment. If we replace the hardware sensor to the deep-learning based software sensor in order to generate the trigger signal, LPR system maintenance would be a lot easier. In this paper we proposed the deep-learning sliding window based object detection and tracking algorithm for the LPR system's trigger signal generation. The gate passing vehicle's license plate recognition results are combined into the normal tracking algorithm to catch the position of the vehicle on the trigger line. The experimental results show that the deep learning sliding window based trigger signal generating performance was 100% for the gate passing vehicles including the 5.5% trigger signal position errors due to the minimum bounding box location errors in the vehicle detection process.
차량 등 객체를 추적하기 위한 많은 알고리즘들이 있지만 본 논문에서 제안하는 특징점 정합 알고리즘 분야는 지수 복잡도의 시간이 걸리는 작업이다. 더구나, 차량을 추적하기 위해 기존에 제안되었던 객체 추출 등 영상 전처리 알고리즘 또한 상당한 시간을 요구한다. 따라서 본 논문에서는 도로상에서 많은 차량들의 이동 궤적을 빠르고 효율적으로 추적하기 위한 방법을 2단계로 제안한다. 1단계로 객체 탐지가 아닌 번호판 영역을 먼저 탐지한 후 특징점을 추출하는 단계하고, 2단계로 특징점들을 정합하기 위한 비용산정식을 구한 후 동적계획법을 이용하여 효율적으로 차량을 추적할 수 있는 방법을 제안한다.
This paper shows the development of the high accuracy vehicle positioning algorithm using the differential technique in vehicle tracking systems form the existing vehicle position which is acquired from the global positioning system (GPS). The control center receives the satellite ephemerise data and pseudorange correction from the reference station, and vehicle position from the moving vehicle. The pseudorange is calculated with the satellite position and the vehicle position, and corrected by pseudorange correction. Using this corrected pseudorange and kalman filter, more improved vehicle positioning data were obtained.
In order for a vehicle to follow a predetermined trajectory accurately, its position must be estimated accurately and reliably. In this thesis, we propose trajectory tracking control methods for unmanned vehicle and a positioning system using ultrasonic wave. The positioning problem is an important part of control problem for unmanned navigation of a vehicle. Dead Reckoning is widely used for positioning of vehicle. However this method has problems because it accumulates estimation errors. We propose a new method to increase the accuracy of position estimation using the Ultrasonic Satellite System (USAT). It is shown that we will be able to estimate the position of vehicle precisely, in which errors are not accumulated. And proposed trajectory tracking control methods include both a new path planning method and a lateral control method for vehicle. The experimental results show that the proposed methods enables exact vehicle trajectory tracking even under various environmental factors.
Xiaole Ge;Feng Zhou;Shuaiting Chen;Gan Gao;Rugang Wang
KSII Transactions on Internet and Information Systems (TIIS)
/
제18권9호
/
pp.2642-2664
/
2024
In the process of modern traffic management, information technology has become an important part of intelligent traffic governance. Real-time monitoring can accurately and effectively track and record vehicles, which is of great significance to modern urban traffic management. Existing tracking algorithms are affected by the environment, viewpoint, etc., and often have problems such as false detection, imprecise anchor boxes, and ID switch. Based on the YOLOv5 algorithm, we improve the loss function, propose a new feature extraction module to obtain the receptive field at different scales, and do adaptive fusion with the SGE attention mechanism, so that it can effectively suppress the noise information during feature extraction. The trained model improves the mAP value by 5.7% on the public dataset UA-DETRAC without increasing the amount of calculations. Meanwhile, for vehicle feature recognition, we adaptively adjust the network structure of the DeepSort tracking algorithm. Finally, we tested the tracking algorithm on the public dataset and in a realistic scenario. The results show that the improved algorithm has an increase in the values of MOTA and MT etc., which generally improves the reliability of vehicle tracking.
The e-Logistics means the virtual business activity and service architecture among the logistics companies based on the Internet technology. The management of vehicles' location in most conventional vehicle tracking system has some critical defects when it deals with data which are continuously changed. It means the conventional vehicle tracking system based on the conventional database is unable eventually to cope with the environment that should manage the frequently changed location of vehicles. The important things in the evaluation of the vehicle tracking system is to determine the threshold of cost of database ,update period and communication period between vehicles and the system. In other words, the difference between the reallocation of vehicle and the data in database can evaluate the overall performance of vehicle tracking systems. Most of the previous works considers only the information that is valid at the current time, and is hard to manage efficiently the past and future information. To overcome this problem, the efforts on moving objects management system(MOMS) and uncertainty processing have been started from a few years ago. In this paper, we propose an uncertainty processing model and system implementation of moving object that tracks the location of the vehicles. We adopted both linear-interpolation method and trigonometric function to chase up the location of vehicles for the past time as well as future time, respectively. We also explain the comprehensive examples of MOMS and uncertainty processing in parcel application that is one of major application of e-Logistics domain.
In the development of intelligent vehicles, path tracking of unmanned vehicle is a basis of autonomous driving and automatic navigation. It is very important to find the exact position of a vehicle for the path tracking, and it is possible to get the position information from GPS. However the information of GPS is not the current position but the past position because a vehicle is moving and GPS has a time delay. In this paper, therefore, the moving distance of a vehicle is estimated using a direction sensor and a velocity sensor to compensate the position error of GPS. In the steering control, optimal fuzzy rules for the path tracking can be found through the simulation of Simulink. Real driving experiments show the fuzzy rules are good for the steering control and the position error of GPS is well compensated by the proposed estimation method.
A vehicle cruise control algorithm using an Interacting Multiple Model (IMM)-based Multi-Target Tracking (MTT) method has been presented in this paper. The vehicle cruise control algorithm consists of three parts; track estimator using IMM-Probabilistic Data Association Filter (PDAF), a primary target vehicle determination algorithm and a single-target adaptive cruise control algorithm. Three motion models; uniform motion, lane-change motion and acceleration motion. have been adopted to distinguish large lateral motions from longitudinal motions. The models have been validated using simulated and experimental data. The improvement in the state estimation performance when using three models is verified in target tracking simulations. The performance and safety benefits of a multi-model-based MTT-ACC system is investigated via simulations using real driving radar sensor data. These simulations show system response that is more realistic and reflective of actual human driving behavior.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.