• 제목/요약/키워드: vehicle simulation

검색결과 3,364건 처리시간 0.028초

현가장치 기구 재구성에 의한 $6\times6$ 로봇차량의 기동성 안정화 (Mobility Stabilization of a $6\times6$ Robot Vehicle by Suspension Kinematics Reconfiguration)

  • 백운경;이지웅
    • 동력기계공학회지
    • /
    • 제14권3호
    • /
    • pp.39-45
    • /
    • 2010
  • The dynamic stability of a robot vehicle can be enhanced by the Force-Angle Stability Margin concept that considers a variety of dynamic effects. To evaluate the robot vehicle stability, a SPI(stability performance index), which is a function of the suspension arm angles, was used. If the SPI has a minimum value, the robot vehicle has maximum stability. The FASM and SPI concepts were incorporated in the mobility simulation by using ADAMS and MATLAB/Simulink. The simulation results using these concepts showed significant improvements of the vehicle stability on rough terrains.

차량의 임팩트하쉬니스 성능 예측 연구 (A Study on the Prediction of the Impact Harshness for a Passenger Vehicle)

  • 김진홍;정일수;김명규;심정수;이상우
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 추계학술대회 논문집
    • /
    • pp.613-616
    • /
    • 2012
  • A multi body simulation (MBS) model is developed for predicting the impact harshness of the vehicle. Impact harshness is the vehicle performance to evaluate the impulsive vibration behavior during driving over an obstacle of the road. Thus, the approach is simulated on the time domain for considering the transient behavior of the vehicle. The validity of vehicle component modeling of bushes, dampers and structure flexibilities is verified. The simulations are compared with the test results in both of vertical and longitudinal directions. In particular, the vertical vibration of the vehicle is significantly affected by the body flexibility. Through the sensitivity analysis, main factors for the impact harshness performance are investigated.

  • PDF

자기센서 기반 자율주행차량의 도로방향 인식 (Recognition of Road Direction for Magnetic Sensor Based Autonomous Vehicle)

  • 유영재;김의선;김명준;임영철
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제52권9호
    • /
    • pp.526-532
    • /
    • 2003
  • This paper describes a recognition method of a road direction for an autonomous vehicle based on magnetic sensors. Using the sensors mounted on a vehicle and the magnetic markers embedded along the center of road, the autonomous vehicle can recognize a road direction and control a steering angle. Using the front lateral deviation of a vehicle and the rear one, the road direction is calculated. The analysis of magnetic field, the acquisition technique of training data, the training method of neural network and the computer simulation are presented. According to the computer simulation, the proposed method is simulated, and its performance is verified. Also, the experimental test is confirmed its reliability.

20자유도 자동차모델을 이용한 가상 주행 시뮬레이터의 개발 (Development of a Virtual Driving Simulator Using 20-DOF Vehicle Model)

  • 김형내;김석일
    • 한국CDE학회논문집
    • /
    • 제3권1호
    • /
    • pp.40-47
    • /
    • 1998
  • Recently, the various driving simulator have been used widely to analyze the handling performance of vehicle and to verify the motion control algorithm of vehicle. In this study, a virtual driving simulator based on the 20-DOF vehicle model is realized to estimate the handling performance and stability of a 4WS (Four-wheel-steering) and/or 4n(Four-wheel-driving) vehicle. Especially the DC motor controlled 4WS actuator is modelled in order to reflect the effect of the responsiveness of actuator on the handling performance and stability. And the realized simulator can be applied to develope a real time simulation system for designing and testing the real vehicles.

  • PDF

비동기식 PRT 차량의 주행제어 알고리즘 (An Algorithm for the Asynchronous PRT Vehicle Control System)

  • 정상기;정락교;김백현
    • 전기학회논문지
    • /
    • 제60권1호
    • /
    • pp.93-99
    • /
    • 2011
  • A PRT vehicle's control method is presented in this paper. In the asynchronous vehicle control system, vehicles follow their leading vehicles. Leading vehicles are defined differently among the different types of track. The main topic of this paper is to present a method to define the leading vehicle among different types of track and the calculation algorithm of the safety length the following vehicle must maintain. Simulation program is developed using the algorithm and the results of the test run are presented. An asynchronous PRT vehicle control algorithm was presented by Szillat in the paper "A low level PRT Microsimulation, Dissertation, University of Bristol, 2001". But it is different from the algorithm in this paper. In the algorithm proposed by Markus, vehicles in the merging track are controlled synchronously, and its safety distance between the leading and the following car is evaluated after the establishment of the complicated future time-location table instead of simple equations proposed in this paper.

Sports Utility Vehicle-EPS의 자유제어 안정성 해석 (Free Control Stability Analysis of Sports Utility Vehicle-EPS)

  • 장봉춘;권대규
    • 한국자동차공학회논문집
    • /
    • 제12권1호
    • /
    • pp.162-167
    • /
    • 2004
  • In this research the Co-simulation technique for an electric power steering system with MATLAB/SIMULINK and a full vehicle model with ADAMS has been developed. The dynamic responses of vehicle chassis and steering system are evaluated. Then, a full vehicle model interacted with EPS control is concurrently simulated with an impulsive steering wheel torque input to analyze the stability of 'free control' or hands free motion for Sports Utility Vehicle. This integrated method allows engineers to reduce the prototype testing cost and to shorten the developing period.

Prescan을 활용한 ADAS 차량의 AEBS에 대한 사고 재현 시뮬레이션 연구 (A Study on the Accident Reconstruction Simulation about AEBS of ADAS Vehicle using Prescan)

  • 김종혁;이재형;김송희;최지훈;전우정
    • 자동차안전학회지
    • /
    • 제15권4호
    • /
    • pp.23-31
    • /
    • 2023
  • In recent years, the technology for autonomous driving has been advancing rapidly, ADAS (Advanced Driver Assistance System) functions, which improve driver convenience and safety performance, are mostly equipped in recently released vehicles and range from level 0 to level 2 in autonomous driving technology. Among the various functions of ADAS, AEBS (Autonomous Emergency Braking System), which analyzes traffic accidents, is the most closely related to the vehicle's braking. This study developed a simulation technique for reproducing accidents related to AEBS based on real vehicle experimental data, and it was applied to the analysis of actual ADAS vehicle accidents to identify the causes of accidents.

실험기반 차량모델을 이용한 실시간 차량동역학 해석 (Real-Time Dynamic Analysis of Vehicle with Experimental Vehicle Model)

  • 유완석;나상도;김광석
    • 대한기계학회논문집A
    • /
    • 제36권9호
    • /
    • pp.1003-1008
    • /
    • 2012
  • 실시간 차량동역학 해석을 위해서는 효율적인 차량 모델이 필요하게 된다. 효율성을 높이기 위해 집중질량모델로 가정하면 현가장치의 특성을 고려하기 어렵게 되며, 현가장치의 특성을 모두 고려한 다물체동역학 모델에서는 효율성이 떨어진다. 그러므로 본 논문에서는 다물체동역학 모델링을 사용하되 해석의 효율성을 저하시키는 현가장치의 각종 요소들의 효과는 기구정역학 실험으로 추출된 특성그래프로 대체함으로써 효율성도 기하고자 시도하였다. $6{\times}6$ 차량을 차체와 휠로 구성된 차량으로 모델을 정의하였고, 다물체동역학 모델인 ADAMS 결과와 비교하여 실험적 모델의 유용성을 검증하였다. 그리고 검증된 실험적 차량모델을 RT-LAB을 활용한 실시간 시뮬레이션 환경에 삽입하여, 실시간성 시뮬레이션의 가능성을 검증하였다.

지프차량의 전복성향 해석 (Rollover Propensity Analysis of A Jeep Vehicle)

  • 백운경
    • 한국안전학회지
    • /
    • 제14권4호
    • /
    • pp.85-92
    • /
    • 1999
  • Vehicle rollover is an important issue for the traffic safety. Rollover can occur from the driver's action, the vehicle characteristics, or the road condition. This study is about the rollover propensity analysis of a jeep vehicle using the steering and braking maneuver, which is the combined result by the driver and the vehicle. Simple equations of roll motion is used to analyze the roll motion and a special purpose vehicle dynamics program is used to simulate the rollover of the jeep vehicle. From the simulation, an incipient rollover motion of the vehicle was found. However, the more complete rollover propensity analysis would require further investigation using roll dynamic sensitivity study.

  • PDF

Development of ABS ECU for a Bus using Hardware In-the-Loop Simulation

  • Lee, K.C.;Jeon, J.W.;Nam, T.K.;Hwang, D.H.;Kim, Y.J.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1714-1719
    • /
    • 2003
  • Antilock Brake System (ABS) is indispensable safety equipment for vehicles today. In order to develop new ABS ECU suitable for pneumatic brake system of a bus, a Hardware In-the-Loop Simulation (HILS) System was developed. In this HILS, the pneumatic brake system of a bus and antilock brake component were used as hardware. For the computer simulation, the 14-Degree of Freedom (DOF) bus dynamic model was constructed using the Matlab/Simulink software package. This model was compiled and downloaded in the simulation board, where the Power PC processor was used for real-time simulation. Additional commercial package, the ControlDesk was used to monitor the dynamic simulation results and physical signal values. This paper will focus on the procedure and results of evaluating the ECU in the HILS simulation. Two representative cases, wet basalt road and $split-{\mu}$ road, were used to simulate real road conditions. At each simulated road, the vehicle was driven and stopped under the help of the developed ECU. In each simulation, the dynamical behavior of the vehicle was monitored. After enough tests in the laboratory using HILS, the parameter-tuned ECU was equipped in a real bus, which was driven and stopped in the real test field in Korea. And finally, the experiment results of ABS equipped vehicle's dynamic behavior both in HILS test and in test fields were compared.

  • PDF