The Journal of Korean Institute of Communications and Information Sciences
/
v.39C
no.10
/
pp.909-919
/
2014
License plate (LP) detection is the most imperative part of an automatic LP recognition (LPR) system. Typical LPR contains two steps, namely LP detection (LPD) and character recognition. In this paper, we propose an efficient Vehicle-to-LP detection framework which combines with an adaptive GMM (Gaussian Mixture Model) and a cascade of boosted classifiers to make a faster vehicle LP detector. To develop a background model by using a GMM is possible in the circumstance of a fixed camera and extracts the motions using background subtraction. Firstly, an adaptive GMM is used to find the region of interest (ROI) on which motion detectors are running to detect the vehicle area as blobs ROIs. Secondly, a cascade of boosted classifiers is executed on the blobs ROIs to detect a LP. The experimental results on our test video with the resolution of $720{\times}576$ show that the LPD rate of the proposed system is 99.14% and the average computational time is approximately 42ms.
Journal of the Institute of Electronics Engineers of Korea CI
/
v.43
no.2
s.308
/
pp.21-32
/
2006
The license plate recognition (LPR) unit consists of the following core components: plate region segmentation, individual character extraction, and character recognition. Out of the above three components, accuracy in the performance of plate region segmentation determines the overall recognition rate of the LPR unit. This paper proposes an algorithm for segmenting the license plate region on the front or rear of a vehicle in a fast and accurate manner. In the case of the proposed algorithm images are captured on the spot where unmanned monitoring of illegal parking and stowage is performed with a variety of roadway environments taken into account. As a means of enhancing the segmentation performance of the on-the-spot-captured images of license plate regions, the proposed algorithm uses a mathematical model for license plate colors to convert color images into digital data. In addition, this algorithm uses Gaussian smoothing and double threshold to eliminate image noises, one-pass boundary tracing to do region labeling, and MBR to determine license plate region candidates and extract individual characters from the determined license plate region candidates, thereby segmenting the license plate region on the front or rear of a vehicle through a verification process. This study contributed to addressing the inability of conventional techniques to segment the license plate region on the front or rear of a vehicle where the frame of the license plate is damaged, through processing images in a real-time manner, thereby allowing for the practical application of the proposed algorithm.
Journal of Korea Society of Digital Industry and Information Management
/
v.18
no.4
/
pp.1-11
/
2022
Recently, research on license plate recognition, which is a core technology of an intelligent transportation system(ITS), is being actively conducted. In this paper, we propose a method to extract numbers and characters from low-quality license plate images by applying the YOLOv4 algorithm. YOLOv4 is a one-stage object detection method using convolution neural network including BACKBONE, NECK, and HEAD parts. It is a method of detecting objects in real time rather than the previous two-stage object detection method such as the faster R-CNN. In this paper, we studied a method to directly extract number and character regions from low-quality license plate images without additional edge detection and image segmentation processes. In order to evaluate the performance of the proposed method we experimented with 500 license plate images. In this experiment, 350 images were used for training and the remaining 150 images were used for the testing process. Computer simulations show that the mean average precision of detecting number and character regions on vehicle license plates was about 93.8%.
In general, the detection of the vehicle license plate is a previous step of license plate recognition and has been actively studied for several decades. In this paper, we propose an algorithm to detect a license plate area of a moving vehicle from a video captured by a fixed camera installed on the road using the Convolution Neural Network (CNN) technology. First, license plate images and non-license plate images are applied to a previously learned CNN model (AlexNet) to extract and classify features. Then, after detecting the moving vehicle in the video, CNN detects the license plate area by comparing the features of the license plate region with the features of the license plate area. Experimental result shows relatively good performance in various environments such as incomplete lighting, noise due to rain, and low resolution. In addition, to protect personal information this proposed system can also be used independently to detect the license plate area and hide that area to secure the public's personal information.
Automatic License Plate Recognition (ALPR) is a technology required for many applications such as Intelligent Transportation Systems and Video Surveillance Systems. Most of the studies have studied were about the detection and recognition of license plates on cars, and there is very little about detecting and recognizing license plates on motorbikes. In the case of a car, the license plate is located at the front or rear center of the vehicle and is a straight or slightly sloped license plate. Also, the background of the license plate is mainly monochromatic, and license plate detection and recognition process is less complicated. However since the motorbike is parked by using a kickstand, it is inclined at various angles when parked, so the process of recognizing characters on the motorbike license plate is more complicated. In this paper, we have developed a 2-stage YOLOv2 algorithm to detect the area of a license plate after detection of a motorbike area in order to improve the recognition accuracy of license plate for motorbike data set parked at various angles. In order to increase the detection rate, the size and number of the anchor boxes were adjusted according to the characteristics of the motorbike and license plate. Image warping algorithms were applied after detecting tilted license plates. As a result of simulating the license plate character recognition process, the proposed method had the recognition rate of license plate of 80.23% compared to the recognition rate of the conventional method(YOLOv2 without image warping) of 47.74%. Therefore, the proposed method can increase the recognition of tilted motorbike license plate character by using the adjustment of anchor boxes and the image warping which fit the motorbike license plate.
Kim, Kyoung-Min;Lee, Byung-Jin;Lyou, Kyoung;Park, Gwi-Tae
Journal of Institute of Control, Robotics and Systems
/
v.3
no.5
/
pp.511-519
/
1997
This paper presents the automatic recognition algorithm of the license number in on vehicle image. The proposed algorithm uses the correlation coefficient and Hough transform to detect license plate. The m/n ratio reduction is performed to save time and memory. By the correlation coefficient between the standard pattern and the target pattern, licence plate area is roughly extracted. On the extracted local area, preprocessing and binarization is performed. The Hough transform is applied to find the extract outline of the plate. If the detection fails, a smaller or a larger standard pattern is used to compute the correlation coefficient. Through this process, the license plate of different size can be extracted. Two algorithms to each separate number are proposed. One segments each number with projection-histogram, and the other segments each number with the label. After each character is separated, it is recognized by the neural network. This research overlomes the problems in conventional methods, such as the time requirement or failure in extraction of outlines which are due to the processing of the entire image, and by processing in real time, the practical application is possible.
The number of vehicles are rapidly increased as our society is developed. The vehicle recognition has been studied for a while because many people acknowledged it has critical functions to solve the problems of traffic control or vehicle-related crimes. In this paper a novel method is proposed to recognize vehicle models corresponding makers. Vehicles' models are recognized based on the texture parameters from segmented radiator region above a number plate. A three-layer neural network was built and trained with the texture features for recognition. The proposed method shows $93.7\%$ of recognition rate and $99.7\%$ of specificity for vehicles' model.
IEIE Transactions on Smart Processing and Computing
/
v.1
no.1
/
pp.17-26
/
2012
This paper presents an image processing-based validation method for unrecognizable numbers in severely distorted license plate images which have been degraded by various factors including low-resolution, low light-level, geometric distortion, and periodic noise. Existing vehicle license plate recognition (LPR) methods assume that most of the image degradation factors have been removed before performing the recognition of printed numbers and letters. If this is not the case, conventional LPR becomes impossible. The proposed method adopts a novel approach where a set of reference number images are intentionally degraded using the same factors estimated from the input image. After a series of image processing steps, including geometric transformation, super-resolution, and filtering, a comparison using cross-correlation between the intentionally degraded reference and the input images can provide a successful identification of the visually unrecognizable numbers. The proposed method makes it possible to validate numbers in a license plate image taken under low light-level conditions. In the experiment, using an extended set of test images that are unrecognizable to human vision, the proposed method provides a successful recognition rate of over 95%, whereas most existing LPR methods fail due to the severe distortion.
In this paper, we propose a low-cost license plate recognition system based on smart cam system using Android. The proposed system consists of a portable device and server. Potable device Hardware consists of ARM Cortex-A9 (S5PV210) processor control unit, a power supply device, wired and wireless communication, input/output unit. We develope Linux kernel and dedicated device driver for WiFi module and camera. The license plate recognition algorithm is consisted of setting candidate plates areas with canny edge detector, extracting license plate number with Labeling, recognizing with template matching, etc. The number that is recognized by the device is transmitted to the remote server via the user mobile phone, and the server re-transfer the vehicle information in the database to the portable device. To verify the utility of the proposed system, user photographs the license plate of any vehicle in the natural environment. Confirming the recognition result, the recognition rate was 95%. The proposed system was suitable for low cost portable license plate recognition device, it enabled the stability of the system when used long time by using the Android operating system.
International Journal of Fuzzy Logic and Intelligent Systems
/
v.9
no.3
/
pp.166-171
/
2009
In recent years, video detection systems have been implemented in various infrastructures such as airport, public transportation, power generation system, water dam and so on. Recognizing moving objects in video sequence is an important problem in computer vision, with applications in several fields, such as video surveillance and target tracking. Segmentation and tracking of multiple vehicles in crowded situations is made difficult by inter-object occlusion. In the system described in this paper, the mean shift algorithm is firstly used to filter and segment a color vehicle image in order to get candidate regions. These candidate regions are then analyzed and classified in order to decide whether a candidate region contains a license plate or not. And then some characters in the license plate is recognized by using the fuzzy ARTMAP neural network, which is a relatively new architecture of the neural network family and has the capability to learn incrementally unlike the conventional BP network. We finally design a license plate recognition system using the mean shift algorithm and fuzzy ARTMAP neural network and show its performance via some computer simulations.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.