• Title/Summary/Keyword: vehicle motion control

Search Result 449, Processing Time 0.026 seconds

Development of a Driving Simulator (차량 구동용 시뮬레이터의 설계 및 제작)

  • 송준근;양경덕;배대성;송창섭;조성현;김성규
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.2
    • /
    • pp.1-10
    • /
    • 1996
  • The objective of this paper is to develop a motion base for the vehicle driving simulator. Kinematic analysis are carried out to obtain maximum strokes and velocities of hydraulic actuators. Hydraulic control forces of the actuators are estimated by inverse dynamic analysis. Finally, an optimal design is performed to find attachment points of the actuators so that control forces are minimized. A control logic for the motion base is developed to make the motion base follow the given reference signals. The control logic is implemented on a digital signal processor(DSP) board.

  • PDF

A Study on the Backward Path Tracking Control of the Trailer Type Vehicle (트레일러형 차량의 후방경로추종제어에 관한 연구)

  • 백운학
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2000.05a
    • /
    • pp.11-15
    • /
    • 2000
  • This paper provides a basic study on automatic of a trailer type vehicle which consists of two parts such as a tractor and a trailer Backward moving and parking control is very important to automate this type of vehicle. However it is very difficult to control such their motion since a trailer type vehicle is a non-holonomic system. Therefore in this paper we propose the backward path tracking control algorithm for a trailer type vehicle. And also this paper presents the results of simulation to verify the effectiveness of the proposed control algorithm.

  • PDF

Unmanned Vehicle System Configuration using All Terrain Vehicle

  • Moon, Hee-Chang;Park, Eun-Young;Kim, Jung-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1550-1554
    • /
    • 2004
  • This paper deals with an unmanned vehicle system configuration using all terrain vehicle. Many research institutes and university study and develop unmanned vehicle system and control algorithm. Now a day, they try to apply unmanned vehicle to use military device and explore space and deep sea. These unmanned vehicles can help us to work is difficult task and approach. In the previous research of unmanned vehicle in our lab, we used 1/10 scale radio control vehicle and composed the unmanned vehicle system using ultrasonic sensors, CCD camera and kinds of sensor for vehicle's motion control. We designed lane detecting algorithm using vision system and obstacle detecting and avoidance algorithm using ultrasonic sensor and infrared ray sensor. As the system is increased, it is hard to compose the system on the 1/10 scale RC car. So we have to choose a new vehicle is bigger than 1/10 scale RC car but it is smaller than real size vehicle. ATV(all terrain vehicle) and real size vehicle have similar structure and its size is smaller. In this research, we make unmanned vehicle using ATV and explain control theory of each component

  • PDF

Design of Optimal Attitude Controller for a Launch Vehicle Using Sloshing Filter (슬로싱 필터를 이용한 발사체의 최적 자세제어기 설계)

  • Kim, Dong-Hyun;Choi, Jae-Weon
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.584-589
    • /
    • 2000
  • When the liquid tanks only partially filled and under translational acceleration, large quantities of liquid move uncontrollably inside the tanks and generate the liquid sloshing effect. Liquid sloshing effect could be a severe problem in launch vehicle stability and control if the liquid modes of motion couple significantly with the launch vehicle's normal modes of motion. Several methods have been employed to reduce the effect of sloshing, such as introducing baffles inside the tanks or dividing a large tank into a number of smaller ones. These techniques, although helpful in some cases, do not succeed in canceling the sloshing effects. In this paper, An attitude controller is designed for a launch vehicle with liquid sloshing effect. Both PD controller and sloshing filter are designed for the objective. PD gains and design parameters are determined by optimal algorithm. The performance of the attitude controller is evaluated via computer simulations.

  • PDF

Analysis of Natural Periods of Sloshing and Control of Sloshing Effect for a Launch Vehicle (슬로싱 고유주기 해석 및 발사체의 슬로싱 효과 제어)

  • 김동현;최재원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.201-201
    • /
    • 2000
  • Recently in the design of fuel tanks(launch vehicle, ship, automobile) which transport a large amount of liquid in the cargo holds, the structural damage due to liquid-sloshing becomes an important problem. The impact pressure from sloshing is most violent when the liquid motion of a partially filled tank is in resonance with the motion of a system. In this paper, the sloshing natural periods in liquid tanks are estimated for partially filled tanks with various geometries. In addition to, controlled for a launch vehicle with liquid sloshing effect by PD controller and sloshing filter The PD gain and sloshing filter parameter arc determined by optimal algorithm.

  • PDF

A Design and Implementation of the remote control system of vehicle using the G-sensor (G센서를 이용한 차량원격제어시스템 설계 및 구현)

  • Song, Jong-Gun;Kwon, Doo-Wy;Do, Kyeong-Hoon;Jang, Won-Tae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.135-138
    • /
    • 2009
  • G-Sensor is being used for controlling motion of smart-phone and robot. G-Sensor can control motion to several direction, because it is composed of X, Y, and Z axis and also can be used on many mobile-phone by using Wi-Fi communication and RS-232C communication on the Bluetooth module. In this research, we suggest the application that realize and develop visual-vehicle-remote-control-system by using mobile-phone with G-Sensor so that drivers can more easily remote control and manage their vehicle with mobile-phone in real-time visual.

  • PDF

Advanced Driver Assistance System for the Control of Turn Signal Indicator (방향지시등 제어를 위한 운전자 지원 시스템)

  • Kim, Dae-Soon
    • Journal of IKEEE
    • /
    • v.22 no.1
    • /
    • pp.143-148
    • /
    • 2018
  • In this paper, a novel turn signal indication scheme is proposed and implemented to handle the turn signal of a vehicle automatically. By adopting accelerometer for the motion recognition of vehicle's momentum, the proposed way could control and manage turn signals according to the moving direction of a car when a driver forgot handling turn signal lever. The designed control system is plugged into the motorbike and tested to demonstrate improved driver's safety suitable for ADAS.

Study on the fluid resistance coefficient for control simulation of an underwater vehicle (수중로봇 제어 시뮬레이션을 위한 유체저항계수 연구)

  • Park, Sang-Wook;Kim, Min-Soo;Sohn, Jeong-Hyun;Baek, Woon-Kyung
    • Journal of Power System Engineering
    • /
    • v.20 no.1
    • /
    • pp.24-29
    • /
    • 2016
  • Remotely operated vehicles or autonomous underwater vehicles have been used for exploiting seabed natural resources. In this study, the autonomous underwater vehicle of hovering type(HAUV) is developed to observe underwater objects in close distance. A dynamic model with six degrees of freedom is established, capturing the motion characteristics of the HAUV. The equations of motion are generated for the dynamic control simulation of the HAUV. The added mass, drag and lift forces are included in the computer model. Computational fluid dynamics simulation is carried out using this computer model. The drag coefficients are produced from the CFD.

Observer Based Adaptive Control of Longitudinal Motion of Vehicles (관측자를 이용한 직진 주행 차량의 적응 제어)

  • Kim, Eung-Seok;Kim, Dong-Hun;Yang, Hai-Won
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.3
    • /
    • pp.130-135
    • /
    • 2001
  • In this paper, an observer-based adaptive controller is proposed to control the longitudinal motion of vehicles. The standard gradient method will be used to estimate the vehicle parameters, mass, time constant, etc. The nonlinear model between the driving force and the vehicle acceleration will be chosen to design the state observer for the vehicle velocity and acceleration. It will be shown that the proposed observer is exponentially stable, and that the adaptive controller proposed on this paper is stable. It will be proved that the errors of the relative distance, velocity and acceleration converge to zero asymptotically fast, and that the overall system is also asymptotically stable. The simulation results are presented to investigate the effectiveness of the proposed method.

  • PDF

Development and Evaluation of ESP Systems for Enhancement of Vehicle Stability during Cornering (II) (차량의 선회시 주행 안정성 강화를 위한 ESP 시스템 개발 및 성능 평가 (II))

  • Song, Jeong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.12 s.255
    • /
    • pp.1551-1556
    • /
    • 2006
  • Two yaw motion control systems that improve a vehicle lateral stability are proposed in this study: a rear wheel steering yaw motion controller (SESP) and an enhanced rear wheel steering yaw motion controller (ESESP). A SESP controls the rear wheels, while an ESESP steers the rear wheels and front outer wheel to allow the yaw rate to track the reference yaw rate. A 15 degree-of-freedom vehicle model, simplified steering system model, and driver model are used to evaluate the proposed SESP and ESESP. A robust anti-lock braking system (ABS) controller is also designed and developed. The performance of the SESP and ESESP are evaluated under various road conditions and driving inputs. They reduce the slip angle when braking and steering inputs are applied simultaneously, thereby increasing the controllability and stability of the vehicle on slippery roads.