• 제목/요약/키워드: vehicle motion control

검색결과 449건 처리시간 0.032초

추진기의 동역학을 고려한 무인잠수정의 슬라이딩 모드 제어 (A Sliding Mode Control of an Underwater Robotic Vehicle under the Influence of Thrust Dynamics)

  • 최형식;박한일;노민식;소명옥
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제33권8호
    • /
    • pp.1203-1211
    • /
    • 2009
  • 무인잠수정의 동역학은 추진체의 동력학에 의해 큰 영향을 받는다. 무인잠수정의 호버링 또는 저속 상태의 움직임을 제어하는 것은 자동 도킹 혹은 잠수정의 매니퓰레이터의 제어에 있어서 매우 중요하다. 모터기반의 추진체 동역학은 비선형적이며 불확실한 매개변수를 가지고 있다. 결국, 추진기와 동적 커플링을 이루는 무인잠수정의 운동역학도 매우 비선형적이며 불확실한 매개변수를 가지고 있기 때문에 강인제어기가 무인잠수정의 모션제어에 있어서 효과적이라고 할 수 있다. 따라서 본 논문에서는 전기 추진체에 의해 추진되는 무인잠수정의 저속 또는 호버링 상태를 제어하기 위한 강인제어 기법을 보인다. 또한, 비선형성과 불확실한 매개변수가 결합된 무인잠수정의 상태도 강인제어를 이용하여 동시에 제어한다. 강인제어 방법 중에서 슬라이딩 모드 제어기를 설계하여 추진체와 무인잠수정의 불확실한 변수와 비선형성들을 보상하며 원하는 위치를 유지하는 제어방법을 제안하였다. 모의실험을 통하여 제안한 슬라이딩 모드 제어기는 선형제어기인 PD제어기 보다 성능이 우수함을 확인할 수 있었다.

VEHICLE LONGITUDINAL AND LATERAL STABILITY ENHANCEMENT USING A TCS AND YAW MOTION CONTROLLER

  • Song, J.H.;Kim, H.S.;Kim, B.S.
    • International Journal of Automotive Technology
    • /
    • 제8권1호
    • /
    • pp.49-57
    • /
    • 2007
  • This paper proposes a traction control system (TCS) that uses a sliding mode wheel slip controller and a PID throttle valve controller. In addition, a yaw motion controller (YMC) is also developed to improve lateral stability using a PID rear wheel steering angle controller. The dynamics of a vehicle and characteristics of the controllers are validated using a proposed full-car model. A driver model is also designed to steer the vehicle during maneuvers on a split ${\mu}$ road and double lane change maneuver. The simulation results show that the proposed full-car model is sufficient to predict vehicle responses accurately. The developed TCS provides improved acceleration performances on uniform slippery roads and split ${\mu}$ roads. When the vehicle is cornering and accelerating with the brake or engine TCS, understeer occurs. An integrated TCS eliminates these problems. The YMC with the integrated TCS improved the lateral stability and controllability of the vehicle.

Analysis of the Lateral Motion of a Tractor-Trailer Combination (II) Operator/Vehicle System with Time Delay for Backward Maneuver

  • Mugucia, S.W.;Torisu, R.;Takeda, J.
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 1993년도 Proceedings of International Conference for Agricultural Machinery and Process Engineering
    • /
    • pp.1147-1156
    • /
    • 1993
  • In order to analyze lateral control in the backward maneuver of a tractor -trailer combination , a kinematic vehicle model and a human operator model with time delay were utilized for the operator/vehicle system. The analysis was carried out using the frequency domain approach. The open-loop stability of the vehicle motion was analyzed through the transfer functions. The sensitivity of the stability of the vehicle motion. to a change in the steering angle, was also analyzed. A mathematical model of the closed -loop operator/vehicle system was then formulated. The closed -loop stability of the operator /vehicle system was then analyzed. The effect of the delay time on the system was also analyzed through computer simulation.

  • PDF

차량 집단 주행 시스템을 위한 임피던스 제어 (Impedance Control for a Vehicle Platoon System)

  • 이수영
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제50권6호
    • /
    • pp.295-301
    • /
    • 2001
  • In this paper, an impedance control using a serial chain of spring-damper system is proposed for a vehicle platoon. For safety of the vehicle platoon, it is required to regulated the distance between each vehicle at a preassigned value even in case of vehicle model error, or moise in the measurement signal. Since the spring-damper system is physically stable and widely used to represent the interaction with the uncertain environments, it is appropriate to the longitudinal control of the vehicle platoon. By considering the nonholonomic characteristics of the vehicle motion, the lateral control and the longitudinal control of the vehicle paltoon are unified in the proposed algorithm. Computer simulation is carried out to verify the robustness against the uncertainties such as the vehicle model error and the measurement noise.

  • PDF

수동 Compliance가 능동적 Compliance제어의 안정도에 미치는 영향 (A Stability Effect of Passive Compliance on Active Compliance Control)

  • Chung, Tae-Sang
    • 대한전기학회논문지
    • /
    • 제39권1호
    • /
    • pp.92-106
    • /
    • 1990
  • Active compliance is often used in the control of robot manipulators for the implementation of complex tasks such as assembly, multi-finger fine motion, legged-vehicle adaptive control,etc. This technique balances the interactive force between the manipulator tip and its working environment with its position and velocity errors to achieve the operation of a damped spring. This paper investigates the effecft of passive compliance on system stability with regard to force feedback implementation for actively compliant motion. Usually it is understood that accurate position control require a stiff system. However, theoretical examination of control experiments on a legged suspension vehicle suggests that, if the control includes discrete-time force feedback, some passive compliance is necessssary at the legs of the vehicle for system stability. This can be an important factor to bl considered in manipulator design and control. A theoretical analysis, numerical simulation, and experimental result, confirming the above conclusion, are introduced in this paper.

  • PDF

신경망을 활용한 무인차량의 횡방향 적응 제어 (Adaptive Control for Lateral Motion of an Unmanned Ground Vehicle using Neural Networks)

  • 신종호;허진욱;최덕선;김종희;주상현
    • 제어로봇시스템학회논문지
    • /
    • 제19권11호
    • /
    • pp.998-1003
    • /
    • 2013
  • This study proposes an adaptive control algorithm for lateral motion of a UGV (Unmanned Ground Vehicle) using an NN (Neural Networks). The lateral motion of the UGV can be corrupted with various uncertainties such as side slip. In order to compensate the performance degradation of the UGV under various uncertainties, an NN-based adaptive control is designed by utilizing a virtual control concept. Since both the drift and input gain terms are uncertain, the proposed method adapts the whole terms related to the difference between the nominal and real systems. To avoid a singularity problem with the adaptive control, the affine property of the UGV dynamic model is utilized and the overall closed-loop stability is analyzed rigorously. Finally, numerical simulations using Carsim are performed to validate the effectiveness of the proposed scheme.

자율주행자동차 PHAROS (Introduction to Autonomous Vehicle PHAROS)

  • 유지환;박장식;;;김혁;송영욱;윤문영;김재석;강전진
    • 제어로봇시스템학회논문지
    • /
    • 제18권8호
    • /
    • pp.787-793
    • /
    • 2012
  • This paper introduces the autonomous vehicle Pharos, which participated in the 2010 Autonomous Vehicle Competition organized by Hyundai-Kia motors. PHAROS was developed for high-speed on/off-road unmanned driving avoiding diverse patterns of obstacles. For the high speed traveling up to 60 km/h, long range terrain perception, real-time path planning and high speed vehicle motion control algorithms are developed. This paper describes the major hardware and software components of our vehicle.

비선형 백스테핑 방식에 의한 차량 동력학의 적응-학습제어 (Adaptive-learning control of vehicle dynamics using nonlinear backstepping technique)

  • 이현배;국태용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.636-639
    • /
    • 1997
  • In this paper, a dynamic control scheme is proposed which not only compensates for the lateral dynamics and longitudinal dynamics but also deal with the yaw motion dynamics. Using the dynamic control technique, adaptive and learning algorithm together, the proposed controller is not only robust to disturbance and parameter uncertainties but also can learn the inverse dynamics model in steady state. Based on the proposed dynamic control scheme, a dynamic vehicle simulator is contructed to design and test various control techniques for 4-wheel steering vehicles.

  • PDF

차량 시스템 개발 및 운전자 인자 연구를 위한 실시간 차량 시뮬레이터의 개발 (Development of a Real-Time Driving Simulator for Vehicle System Development and Human Factor Study)

  • 이승준
    • 한국자동차공학회논문집
    • /
    • 제7권7호
    • /
    • pp.250-257
    • /
    • 1999
  • Driving simulators are used effectively for human factor study, vehicle system development and other purposes by enabling to reproduce actural driving conditions in a safe and tightly controlled enviornment. Interactive simulation requries appropriate sensory and stimulus cuing to the driver . Sensory and stimulus feedback can include visual , auditory, motion, and proprioceptive cues. A fixed-base driving simulator has been developed in this study for vehicle system developmnet and human factor study . The simulator consists of improved and synergistic subsystems (a real-time vehicle simulation system, a visual/audio system and a control force loading system) based on the motion -base simulator, KMU DS-Ⅰ developed for design and evaluation of a full-scale driving simulator and for driver-vehicle interaction.

  • PDF

원격주행을 위한 무인 자동차에 관한 기본설계와 성능분석에 관한 연구 (THE BASIC DESIGN AND ANALYSIS OF UNMANNED VEHICLE FOR TH TELE-OPERATION CONTROL)

  • 심재흥;윤득선;김민석;김정하
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.139-139
    • /
    • 2000
  • The subject of this paper is the tole operation for unmanned vehicle. The aim is studied in context of motor control system and algorithms for the mid to low level control of tele operation unmanned vehicle described. Modern, vehicle related researches have been implemented about control, chassis, body and safe쇼 but now is to driving comfort, I.T.S. and human factor, etc. As a result of this fact, unmanned vehicle is main research topic over the world but it is still very expensive and unreasonable. A hierarchical approach is studied in context of motor control system and algorithms for the mid to low level control of tele operation unmanned vehicle described. The real time control and monitoring of longitudinal, lateral, Pitching motion is to be solved by system integration and optimization technique. We show the experimental result about fixed brake range test and acceleration test. And all system is to integrated for driving simulator and unmanned vehicle.

  • PDF