• Title/Summary/Keyword: vehicle exhaust

Search Result 486, Processing Time 0.023 seconds

A study on the characteristics of fuel performance according to the oxygenated additive type for gasoline fuel Part 2. Exhaust and Non-regulated, PM emission characteristics (휘발유 연료용 함산소 첨가제 종류에 따른 성능 특성 연구 Part 2. 배출가스 및 미규제 물질, 입자상 물질 특성)

  • Lee, Min-Ho;Kim, Ki-Ho;Ha, Jong-Han
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.374-384
    • /
    • 2016
  • Concern about air pollution is gradually rising up in domestic and foreign, automotive and fuel researchers are trying to reduce vehicle exhaust emissions, through a lot of approaches, which consist of new engine design and innovative after-treatment systems, using clean (eco-friendly alternative) fuels and fuel quality improvement. This research is proceeding by two main issues : exhaust emissions and PM particle emissions of gasoline vehicle. Exhaust emissions, non-regulated emissions and PM (particulate matter) particles of automotive are causing many problems which ambient pollution and harmful effects on the human body. The main particulate fraction of automotive exhaust emissions consists of small particles. Because of their small size, inhaled particles can easily penetrate deep into the lungs. The rough surfaces of these particles make it easier for them to combine with other toxins in the environment. Thus, the hazards of particle inhalation are increased. Based on the oxygenated fuel additive types (MTBE, Bio-ETBE, Bio-ethanol, Bio-butanol), this paper discussed the influence of oxygen contents on gasoline vehicle exhaust emissions, non-regulated emissions and nano-particle emissions. Also, this paper assessed exhaust emission characteristics at 2 type test modes. The test modes were FTP-75 and HWFET. All measurement items be verified less than the value of regulated emissions. It could be known difference increase and decrease by each measurement item depending on increase the oxygen contents.

A study on Emission Reduction by DOC on Heavy Duty Diesel Engine (대형디젤기관에서 DOC에 의한 배출가스 저감에 관한 연구)

  • 한영출;류정호;오용석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.5
    • /
    • pp.16-21
    • /
    • 1999
  • The diesel vehicle is relatively superior to gasoline vehicle on the fuel consumption, durability and combustion efficiency. However, exhaust emission from diesel vehicle are known to be harmful to human health and environment. The treatment technologies for the diesel exhaust gases are classified as replacement of fuel, quality control of diesel fuel, improvement of engine and aftertreatment system. The most effective for the treatment technology is known to be aftertreatment system, and this research is continuously conducted by many groups. The DOC system has many advantages of reducing particulates and harmful gaseous substances such as CO. HC. Moreover, it is simple in device structure, relatively low cost, and easy to install witout retrofitting the vehicle. In this study, experiment were conducted to analyze the effects on factors of oxidation characteristics and conversion efficiency of DOC. In experiment, test was conducted to estimate engine emission in 11,000cc diesel engine which was equipped with DOC.

  • PDF

Improving Sound Quality of the Exhaust System Using Convolution Analysis (자동차 배기계에 대한 음질 향상)

  • Yunseon Ryu;Kim, Yoon-Seok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1148-1150
    • /
    • 2002
  • The exhaust system could be a dominant acoustical source in the passengers vehicle. It would be very important to obtain the acoustically good exhaust system, in order to control the cabin interior sound in automotive. In order to obtain the acoustically good exhaust system in automotive, many kinds of exhaust system should be measured, and simultaneously those results should be compared by the sound quality parameters. In this paper, in order to develop the methodology determining sound quality parameters, acoustic simulator is introduced, combining the time domain analysis and convolution analysis. As an example to verify the reliability of this method, several kinds of measurements are carried out, and the acoustically good exhaust system is selected, based on this proposed method.

  • PDF

The pulsating pressure in the intake and exhaust manifold of a single cylinder engine by the various of engine revolutions

  • Chung, Han-Shik;Choi, Seuk-Cheun;Jong, Hyo-Min;Lee, Chi-Woo;Kim, Chi-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.75-82
    • /
    • 2004
  • In this research, a computer analysis has been developed for predicting the Pipe pressure of the intake and exhaust manifold in a small single cylinder engine. To get the boundary conditions for a numerical analysis one dimensional and unsteady gas dynamic calculation is performed by using the MOC(Method Of Characteristics). The main numerical parameters are engine revolutions. to calculate the Pulsating flow which the intake and exhaust valves are working. The distributions of the exhaust pipe pressures were influenced strongly to the cylinder pressures and the shapes of exhaust pressure variation were similar to the Inside of cylinder pressure As the engine revolutions are increased. the intake pressure was lower than ambient pressure. The amplitude of exhaust pressure had increased and the phase of cylinder pressure $P_c$ is delayed and the amplitude of cylinder pressure were increased.

Receptor Model(CMB) and Source Apportionments of VOCs in Seoul Metropolitan Area (수용모델(CMB)을 이용한 수도권 VOCs의 배출원별 기여율 추정)

  • Han, Jin-Seok;Hong, Y.D.;Shin, S.A.;Lee, S.U.;Lee, S.J.
    • Journal of Environmental Impact Assessment
    • /
    • v.14 no.4
    • /
    • pp.227-235
    • /
    • 2005
  • Source contribution for VOCs collected in Seoul metropolitan area was conducted using PAMs (Photochemical assessment monitoring system) data and CMB(Chemical Mass Balance) model8.0, in order to estimate spatial and temporal variations of VOCs source contribution in that area, and also to compare with corresponding emission inventory. VOCs data used in model calculation were collected at 6 different sites of PAMs(Seokmori, Guwoldong, Simgokdong, Bulgwangdong, Jeongdong and Yangpyeong) and 22 out of 56 VOCs species were analyzed from June 2002 to march 2003 and used for CMB model estimation. The result showed that vehicle exhaust, coating and energy combustion were important sources of VOCs in Seoul metropolitan area, averaging 32.6%, 25.5% and 25.1%, respectively. In this study as well as other references, it was revealed that vehicle exhaust is the main contributor of urban area VOCs, but there is remarkable contrast between emission inventory and model estimation. Vehicle exhaust portion is seriously underestimated while coating is usually overestimated in emission estimates, compared to CMB results. Therefore, it is considered to assert and confirm the uncertainty of emission estimates and clarify the distinction between two other source apportionment methods.

A Review on the Characteristics of Air Pollutants Emitted from Passenger Cars in Korea

  • Jung, Sungwoon;Kim, Jeongsoo
    • Journal of ILASS-Korea
    • /
    • v.21 no.4
    • /
    • pp.223-236
    • /
    • 2016
  • On-road source emissions are major air pollutants and have been associated with serious health effects in Seoul metropolis. Thus, it is of fundamental importance to have an accurate assessment of vehicle emissions in order to implement an effective air quality management policy. As a result, there is a need to overview vehicle emission characteristics of air pollutants. This article discusses vehicle exhaust sampling and chemical analysis, emission characteristics of air pollutants, and emission regulations from passenger cars. The vehicle exhaust sampling and chemical analysis methods were described in particulate matter and gaseous compounds. In this article, chassis dynamometer, measurement instrumentation for nano-particulate matter and carbon compounds analysis device were described. For the gasoline and diesel vehicles, the effective parameters of emissions were average vehicle speed, vehicle mileage and model year. The particle number emissions for diesel nano-particles were sensitive to the sampling conditions. Also, the particle number emissions with a diesel particle filter (DPF) largely reduced rather than those without it. This article also describes different emission characteristics of air pollutants according to biodiesel or bioethanol mixing ratio. The Korean emission standards for passenger cars were compared with those of the US and EU. Finally, the objective is to give an overview of relevant background information on emission characteristics of air pollutants from passenger cars in Korea.

An Experimental Study(I) on the Noise Emission Characteristics of Motor Vehicles Using Sound Intensity Measurement Method -A Case of Engine and Exhaust Noise- (음향 인텐시티 측정법을 이용한 자동차의 소음방사특성에 관한 실험적 연구 I -엔진 및 배기계 부위소음을 중심으로-)

  • 양관섭;유남구;박병전;김영완
    • Journal of KSNVE
    • /
    • v.6 no.6
    • /
    • pp.843-849
    • /
    • 1996
  • Locations and emission characteristics of noise source of motor vehicles are great important factors to control the road traffic noise in effective ways. From results of this study on emission characteristics of engine and exhaust noise, we could find that every noise emission of different kind of vehicles has smilar pattern. The main emission locations of engine noise for the front of vehicle became the space between the road surface and bottom of the body and radiator grill, and for the side of vehicle became the space between the road surface and bottom nearby the front wheel. In case of exhaust noise of passenger-car and light truck, all the highest sound intensity level located near surface of road. But it is hard to conclude the height of noise source of driving vehicles with only results of this study. So further studies are needed to check the emission characteristics of noise.

  • PDF

A Vibration Analysis Model for Bellows in the Vehicle Exhaust System Using Method of Reduced Degree of Freedom (자유도 저감법을 이용한 자동차 배기시스템의 벨로우즈 진동해석)

  • Shim, Dong-Hyouk;Kim, Dae-Hyun;Choi, Myung-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.304-308
    • /
    • 2006
  • The focus of this study is modeling technique for a bellows in vehicle exhaust system. Bellows was developed using tile finite element model by replacing with the equivalent beam. The equivalent beam model were studied in detail. Non-structural node in the cross section of original model is given to expressing their motion. Equivalent mass matrix and stiffness matrix calculated using Guyan reduction method. Material Properties of beam was obtained from the direct comparison between equivalent model and that of Timoshenko beam model. The calculated natural frequencies and mode shape are compared with the reference results and coincided well. The results were compared with the confirmed results, which were in good agreement.

  • PDF

A Model for Estimating NOx Emission Concentrations on National Road (차량배출가스로 인한 일반국도 NOx 대기오염 추정 모형)

  • Oh, Ju-Sam;Kim, Byung-Kwan
    • International Journal of Highway Engineering
    • /
    • v.13 no.3
    • /
    • pp.121-129
    • /
    • 2011
  • The purpose of this study is to determine the relationship between observed traffic data and NOx concentrations from not an ideal condition but a real road in real-time. Also we aim to develop an estimation model for NOx emission concentrations due to vehicle exhaust gas, and it can be applied to monitor the degree of air pollution on National Road in real-time. To eliminate outliers which are occurred due to errors of equipments and other variables, we use the robust analysis and develop two models. which are considering and not considering wind impact. The result of this research can be used for understanding present condition of air pollution caused by vehicle exhaust gas and evaluating for environmental effects of transportation policy.

Analysis of Down Speeding Effect on Fuel Economy during NEDC (다운 스피딩이 NEDC 모드 연비에 미치는 기여도 산출에 관한 연구)

  • Shim, Beom-Joo;Park, Kyoung-Suk;Park, Jun-Su
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.5
    • /
    • pp.88-94
    • /
    • 2012
  • Development trend of modern HSDI diesel engine is now focusing on low fuel consumption and emission because of strong interest in global environmental protection. Two big branches of criteria for modern diesel engine development are down sizing and down speeding. Down sizing keeps engine operation condition to the direction of higher load and thus pursuing for better thermal efficiency. But this may cause degraded vehicle dynamic performance because of reduced back up torque. Down speeding keeps engine operation condition to the direction of slightly higher load and lower engine speed. Therefore reduction of back up torque can be limited within flat torque area. This study analyzed fuel economy effect of down speeding on a vehicle powered by HSDI diesel engine in aspect of engine friction work, intake and exhaust pumping work, exhaust hat loss and thermal loss of fuel leakage of fuel injection system. Contribution factor of each engine and vehicle related parameters under basic and down speeding condition were compared and work balance of down speeding during NEDC was analyzed.