• Title/Summary/Keyword: vehicle emissions

Search Result 535, Processing Time 0.022 seconds

A Review of Emissions Studies for Transportation Engineering (교통환경분야의 국내외 연구동향 및 시사점 (차량배출량 관련 연구를 중심으로))

  • Gang, Jong-Ho;Lee, Cheong-Won
    • Journal of Korean Society of Transportation
    • /
    • v.25 no.6
    • /
    • pp.7-18
    • /
    • 2007
  • There are few studies on air pollution due to vehicle emissions in spite of the importance of this field. Therefore, this study describes trends and suggests implications through analysis relating to existing emissions research. This study has been divided into three areas. The first part is about estimating vehicle emissions. In this part, the authors analyze limits in ways of calculating emissions in the existing macroscopic view and then suggest the development of a model for calculating emissions considering velocity and acceleration. These variables are a function of traffic and individual driving behavior in the microscopic view. The second part is about management techniques for reducing vehicle emissions. The traffic management techniques for reducing vehicle emissions should conform to regional characteristics. The final part is about traffic operation for reducing vehicle emissions. The authors suggest the development of a micro-simulator and then the development of strategies for traffic operation. It is necessary to design better models estimating emissions and then, using real time data, to make a monitoring system simulating emission rates. This study serves as a literature review to make a foundation for further research about emissions research for transportation engineering.

A Review on the Characteristics of Air Pollutants Emitted from Passenger Cars in Korea

  • Jung, Sungwoon;Kim, Jeongsoo
    • Journal of ILASS-Korea
    • /
    • v.21 no.4
    • /
    • pp.223-236
    • /
    • 2016
  • On-road source emissions are major air pollutants and have been associated with serious health effects in Seoul metropolis. Thus, it is of fundamental importance to have an accurate assessment of vehicle emissions in order to implement an effective air quality management policy. As a result, there is a need to overview vehicle emission characteristics of air pollutants. This article discusses vehicle exhaust sampling and chemical analysis, emission characteristics of air pollutants, and emission regulations from passenger cars. The vehicle exhaust sampling and chemical analysis methods were described in particulate matter and gaseous compounds. In this article, chassis dynamometer, measurement instrumentation for nano-particulate matter and carbon compounds analysis device were described. For the gasoline and diesel vehicles, the effective parameters of emissions were average vehicle speed, vehicle mileage and model year. The particle number emissions for diesel nano-particles were sensitive to the sampling conditions. Also, the particle number emissions with a diesel particle filter (DPF) largely reduced rather than those without it. This article also describes different emission characteristics of air pollutants according to biodiesel or bioethanol mixing ratio. The Korean emission standards for passenger cars were compared with those of the US and EU. Finally, the objective is to give an overview of relevant background information on emission characteristics of air pollutants from passenger cars in Korea.

Analysis of CO2 Emission Sensitivity in Roadways (도로에서 차량당 CO2 발생의 민감도)

  • Lee, Yoon-Seok;Oh, Heung-Un
    • International Journal of Highway Engineering
    • /
    • v.14 no.5
    • /
    • pp.113-122
    • /
    • 2012
  • PURPOSES: The sensitivity of $CO_2$ emissions per vehicle by a various speeds is compared according to the type of roads. METHODS: The methodology of the study are as follows: First, the sensitivity of $CO_2$ emissions per vehicle are analyzed by averaged daily travel speeds. Second, the sensitivity of $CO_2$ emissions per vehicle are analyzed by averaged hourly travel speed. Third, the sensitivity of $CO_2$ emissions per vehicle are analyzed by sectional travel speeds. RESULTS: The sensitivity that on Saturday in a week, at peak times in a day and in close location from Seoul was higher than in other situations. CONCLUSIONS: From this study, we may conclude that $CO_2$ emissions per vehicle at low speeds are generally more sensitive.

A Methodology for Estimation of Vehicle emissions in a Metropolitan Area (지자체 도로이동오염원 배출량 산정 방안)

  • Hahn, Jin Seok
    • Journal of Environmental Policy
    • /
    • v.14 no.3
    • /
    • pp.3-19
    • /
    • 2015
  • In this paper, we reviewed the method of replacing the number of registered vehicles with the number of trips to more realistically calculate vehicle emissions. Using the Korea Transport Data Base (KTDB) in replacing the number of registered vehicles with adjusted number of registered vehicle by specific vehicle type in the metropolitan area, the results by region showed that Seoul had the widest rate of error and that, among vehicles, trucks had the widest rate of error. Also, the absolute value of deviation of registered vehicles and adjusted number of registered vehicle influenced by the calculation of the quantity of vehicle emissions showed that out of the metropolitan regional government all trucks showed the widest deviation. The results of calculating the quantity of vehicle emissions showed an average of 9% difference between the emissions based on the number of registered vehicles and the emissions based on adjusted number of registered vehicle.

  • PDF

A Research on the Emissions According to Test Modes of Diesel Vehicles for Euro-6 (Euro-6 대응 경유 차량의 규제 시험모드에 따른 배출가스 성능 비교 분석)

  • Kang, Minkyung;Kwon, Seokjoo;Seo, Youngho
    • Journal of Institute of Convergence Technology
    • /
    • v.8 no.1
    • /
    • pp.5-8
    • /
    • 2018
  • Emissions of diesel vehicles have been regulated by NEDC mode for a long time. However, the NEDC mode has been known the control of emission reduction is not reflected properly on actual road conditions. For these reasons, diesel vehicle emissions are regulated in both NEDC mode and WLTC mode from 2017 to 2020, from 2020 onwards, the emissions of diesel vehicles will measure in WLTC mode only and will not be able to exceed 1.5 times the regulated value. The purpose of this study is to analyze the development trend of diesel vehicle after-treatment system in order to comply with the future regulations on diesel vehicle. As a result, it is essential to reduce the NOx emissions of diesel vehicles for Euro 6, the NOx emissions of the test vehicle equipped with SCR were 30% to 50% loss than the test vehicle equipped with LNT despite the higher curb weight and engine displacement.

Measurement of unburned methanol and formaldehyde emissions from methanol fueled vehicles (메탄올자동차 배기배출물중의 미연메탄올 및 포름알데하이드 측정)

  • 명차리;한상순
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.5
    • /
    • pp.89-94
    • /
    • 1991
  • In the quantitative analysis of oxygenated exhaust emissions (unburned methanol, formal- dehyde) from methanol fueled vehicles, the oxygen contained in oxygenated exhaust gases lowers the FID (Flame Ionization Detector) response factor of conventional THC analyzer and leads to erroneous HC reading. For correct measurement of various HCs including oxygenated HCs emitted from FFV(Flexible Fuel Vehicle), first of all, the measurement technique of real HC emissions should be established. GC and HPLC-DNPH measuring methods specified by the EPA are used in this paper to analyze unburned methanol and formaldehyde components in the exhaust emissions. In emission test of FFV, unburned methanol and formaldehyde are emitted mostly during cold transient period, and it is shown that formaldehyde emission level is proportional to engine displacements. In view of the HC emission level, vehicle using M85 has 40% advantage over gasoline-fueled vehicle in OMHCE and has a good potential of a low emission vehicle.

  • PDF

Vehicles' CO2 Emissions by Intersection Types (교차로 형태에 따른 차량 당 탄소가스 배출량 비교)

  • Kim, Da-Ye;Oh, Heung-Un
    • International Journal of Highway Engineering
    • /
    • v.15 no.5
    • /
    • pp.123-133
    • /
    • 2013
  • PURPOSES : The present paper is to compare vehicles' $CO_2$ emissions in roundabouts and signalized intersections. METHODS : The present paper uses the SIDRA software with variables of traffic and road conditions. RESULTS : The results of the study are as follows : First, when entering traffic volumes are more than 1600pcph, vehicle's $CO_2$ emissions in roundabouts are lower than those of signalized intersections regardless of the left turn ratio. Second, When entering traffic volumes are more than 2800pcph, vehicles's $CO_2$ emissions in 2-lane approaches are lower than those of 1-lane approaches in signalized intersection. Third, when entering traffic volumes are more than 1600pcph, vehicle's $CO_2$ emissions of CASE B are lowest. (CASE B is the condition with one exclusive left-turn lane and one exclusive straight lane and one shared straight lane with right-turn.) Also, CASE A is the condition that vehicle's $CO_2$ emissions in roundabouts are lower than those of signalized intersections between 1600pcph and 3600pcph. (CASE A is the condition with one exclusive left-turn lane and one shared straight lane with right-turn.) But, when entering traffic volumes are more than 4000pcph, vehicle's $CO_2$ emissions in signalized intersections is lower than those of roundabouts. CONCLUSIONS : It may be concluded that vehicle's $CO_2$ emissions on roundabouts are much lower than those of signalized intersections, especially, when entering traffics volumes are between 1600pcph and 3600pcph in 1-lane or 2-lane approaches.

Effect of Traffic Calming Using Speed-Maintained Standardization on Environment-Friendliness of Downward Slope Location based on GHG Emission Indicators (자연친화적인 급내리막 직선부에서 GHG 배출지표에 근거한 속도유지표준화 형태의 교통정온화)

  • Hong, Su-Jeong;Oh, Heung-Un
    • International Journal of Highway Engineering
    • /
    • v.18 no.2
    • /
    • pp.103-110
    • /
    • 2016
  • PURPOSES: In this paper, the effectiveness of speed-maintained standardization in road geometry on environmental impact at a downward slope location, based on greenhouse gas (GHG) emission indicators, was studied. Specifically, the aim of this study was to ascertain whether speed-maintained standardization resulted in decreased $CO_2$ emissions as well as noise pollution, due to reduced vehicle speeds. METHODS : In this study, speed-maintained standardization in road geometry was proposed as a means to reduce vehicle speeds, with a view to reducing $CO_2$ emissions and noise pollution. This technique was applied at a downward slope location. The vehicle speeds, $CO_2$ emissions, and noise levels before and after application of speed-maintained standardization were compared. RESULTS: It was found that speed-maintained standardization was effective as a means to reduce speed, as well as $CO_2$ emissions and noise pollution. By applying speed-maintained standardization, it was confirmed that vehicle speeds were reduced consistently. As a result, $CO_2$ emissions and noise levels were decreased by 9% and 11%, respectively. CONCLUSIONS : This study confirmed that speed-maintained standardization in road geometry is effective in reducing vehicle speeds, $CO_2$ emissions, and noise levels. Moreover, there is further scope for the application of this method in the design of roads in urban and rural areas, as well as in the design of highways.

A Study on the Target Values Fixing of Green Vehicle Emissions in Consideration of In-use Deterioration (운행차 열화특성을 고려한 제작차 배출가스 목표치 설정에 관한 연구)

  • 김현우
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.104-110
    • /
    • 2003
  • As exhaust emission standards are more stringent, higher conversion efficiency of automotive catalytic converter is required. In addition, catalytic converter is deteriorated during mileage accumulation of vehicle. Therefore the specification of catalytic converter should be decided in consideration of emission standards and deterioration. Because the decision of the specification of catalytic converter is required at the beginning of vehicle development procedure, it is important and necessary to fix the target values of green vehicle exhaust emissions. To do this, a linear regression analysis was done with in-use exhaust emissions data of 5 different kinds of vehicle that received US94 emission standards certification, and data handling methods including some statistical estimation were proposed. As a result, the fixed target values of NMHC, CO, NOx of green vehicle against US94 emission standards were 0.079, 0.83, 0.116, respectively. And expected in-use deterioration factor of NMHC, CO, NOx were 1.75, 2.02, 1.38, respectively. And also it was blown that even if failure rate is 30% after 80,000km driven, it might be sufficiently safe from emission failure confirmatory test of Korea. It is hopeful to make a database of in-use emissions to increase the confidence in correctness of the calculated target values.

Determination of vehicle emission factor of NMHC from a tunnel study (터널 측정을 통한 비메탄계 탄화수소의 자동차 배출계수 산정)

  • Na Gwang-Sam;Kim Yong-Pyo;Kim Yeong-Seong;Mun Il
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2000.11a
    • /
    • pp.136-138
    • /
    • 2000
  • The vehicle emissions of primary air pollutants are described by the emission factor (EF), defined as the emitted mass (g) of a compound per distance (km) and vehicle. The EF can be determined by exhaust measurements from single vehicles in dynamometric tests. However, the EF of a large number of vehicles has to be measured to obtain the representative results for actual road traffic emissions. Road traffic emissions can also be determined by exhaust measurements of driving vehicles or in tunnel measurements. (omitted)

  • PDF