• 제목/요약/키워드: vehicle emission

검색결과 700건 처리시간 0.033초

自動車에 의한 汚染物質 排出係數 및 排出量 算定에 관한 硏究 (Estimation of Emission Factor and Air Pollutant Emissions by Motor Vehicles)

  • 趙康來;金良均;董宗仁;嚴明道
    • 한국대기환경학회지
    • /
    • 제3권1호
    • /
    • pp.55-64
    • /
    • 1987
  • Actual driving pattern of each motor vehicle type was measured and analyzed in Seoul area and vehicle emission rate was measured and traffic data were used to estimate vehicular emission factor and motor vehicle-related air pollutant emission. The analysis of contribution ratio of each vehicle type showed that LPG taxi's took 38.1% of total vehicular CO, gasoline passenger cars 37.5%, therefore, these cars are major sources of CO, gasoline passenger cars took 45.4% of total vehicular HC, motorcycles 25.3%, LPG taxi's 16.2%, so motorcycles can be said to play an important role in HC emission. For NOx, buses and trucks were thought to be major sources as buses took 36.8% and truck 26.4%. Diesel vehicles, on the other hand, took most $SO_2$ and particulate matter emission. Total emission from motor vehicles in Seoul was estimated to be 547 t/day of CO, 68t/day of HC, 163t/day of NOx, 18t/day of $SO_2$ and 19t/day of paticulate matter.

  • PDF

대기 온도에 따른 가솔린 차량의 실도로 배출가스 특성 연구 (Study on RDE (Real Driving Emission) Characteristic of Gasoline Vehicle Depending on the Ambient Temperature)

  • 김현진;김성우;이민호;김기호;이정민
    • 한국분무공학회지
    • /
    • 제23권4호
    • /
    • pp.221-226
    • /
    • 2018
  • Despite the increasingly stringent automotive emissions regulations, the impact of vehicle emissions on air pollution remains large. In addition, since the issue of emission of more exhaust gas than the exhaust gas measured in the test room when the vehicle passing the exhaust gas regulation standard is run on the actual road, many countries studied and introduced gas regulations about Real Driving Emission using Portable Emission Measurement System. At present, Korea regulations restrict the number of NOx and PN in diesel vehicles. In the case of gasoline vehicles, there is no regulation on emission gas, but there is a problem of continuing automobile exhaust gas problems and a large amount of gasoline GDI vehicle's PN emission. So research and interest are increasing due to this problem. In this study, characteristics of exhaust gas depending on changes of ambient temperature were analyzed among various factors affecting exhaust gas measurement of gasoline vehicles. As a result, at the low temperature test, the lower the ambient temperature, the more the exhaust gas was emitted. At ordinary temperature test, no specific tendency was observed due to changes of ambient temperature.

운행차 배출가스 정밀검사 결과를 이용한 휘발유 승용차 대기오염물질 배출량 중 고농도 배출 차량의 기여도 분석 (Quantified Contribution of High Emitting Vehicles to Emission Inventories for Gasoline Passenger Cars based on Inspection and Maintenance Program Data)

  • 이태우;김지영;이종태;김정수
    • 한국대기환경학회지
    • /
    • 제28권4호
    • /
    • pp.396-410
    • /
    • 2012
  • The purpose of this study is to quantify the contribution of high emitting vehicles to mobile emission inventories. Analyzed emission data include $NO_x$, HC, and CO results, which were measured through the vehicle Inspection and Maintenance (I/M) program in Seoul metropolitan area. The high emitting vehicles were identified as the top 5% worst polluting cars of the fleet. We estimated that 5% of the gasoline passenger car fleet, which is high emitters, generated 25.5% of $NO_x$, 34.5% of HC, and 66.1% of CO emissions of total inventories for gasoline passenger car fleet in year 2010. In the study, we identified that the older vehicles (older than ten years) and high mileage vehicles (more than 120,000 km driven) comprised high emitter fleet with 70.9% and 71.2%, respectively. The emission contribution of high emitters became larger in younger fleet than in the older fleet. This is due to the reduced emission rates in newly manufactured vehicles, which were developed under the more stringent emission regulation limits. This analysis implies that high emitters could be responsible for an even larger fraction of total vehicular emissions as more advanced technology vehicles are being incorporated into the current vehicle fleet. The findings suggested that the high emitting vehicles should be primarily considered for in-use vehicle emission management program, such as I/M, accelerated vehicle retirement, or catalytic converter replacement, in order to enhance the effectiveness of selected program.

국내 소형자동차의 실제 도로 주행 배출가스 특성에 관한 연구 (A Study on the Emission Characteristics of Korean Light-duty Vehicles in Real-road Driving Conditions)

  • 박준홍;이종태;김선문;김정수;안근환
    • 한국자동차공학회논문집
    • /
    • 제21권6호
    • /
    • pp.123-134
    • /
    • 2013
  • Strengthening vehicle emission regulation is one of important policies to improve air quality in urban area. Due to the limitation of specified driving cycles for certification test to reflect real driving conditions, additional off-cycle emission regulations have been adopted in US and being developed in Europe. The driving cycles of US or Europe have been used in emission certification for Korean light-duty vehicles, but it has not been known how well the driving cycles reflect various real driving patterns in Korea. In that point of view, it is required to estimate vehicle emission based on real road driving conditions to raise the effectiveness of vehicle emission regulation in Korea. In this study, real driving emission measurements have been conducted for three Korean light-duty vehicles with PEMS. The driving routes consisted of urban, rural and motorway in Seoul and Incheon. The data have been analyzed with various averaging methods including moving averaging windows method and compared to emission limits set with emission certification modes applied to tested vehicles. The results have shown that the real driving pollutant emissions of a gasoline and a LPG vehicles have been ranged quite lower than those of emission limits on CVS-75 driving cycle. But real driving NOx of a light duty diesel vehicle has been considerably higher than emission limit of NEDC driving cycle. The higher than expected NOx emission of a diesel vehicle might be caused by different strategy to control EGR in real driving condition from NEDC driving.

실차 운행정보를 활용한 온실가스 배출지표 분석 방법에 대한 연구 (A Study on the Analysis Method of Emission Intensity of GHGs utilizing Real World Vehicle Driving Information)

  • 김용범;김필수;한용희;이헌주;장영기
    • 한국기후변화학회지
    • /
    • 제7권1호
    • /
    • pp.19-29
    • /
    • 2016
  • In this study, the emission intensity calculation method of GHGs was developed by considering the characteristics of the models and time series. The telematics device was installed on the car (OBD-II) to collect information on the operation conditions from each sample vehicle of public authorities. Based on emission intensity of GHGs, it presented a methodology of quantitative comparison of GHGs emission by vehicles. Collected driving information of vehicle was used for operating characteristics analysis of the target vehicle, and it was confirmed different operating characteristics through comparison of the results and previous study. GHGs emission intensity were analyzed considering characteristics of vehicle type by passenger car, van, cargo, and considering characteristics of the time series by summer, winter, and intermediate. From the analysis result, it was calculated GHGs emission intensity based on mileage ($g\;CO_2\;eq./km$) and operating time ($g\;CO_2\;eq./sec$).

차량 가속특성에 따른 이산화탄소(CO2) 배출량 비교 (CO2 Emission Considering Condition of Vehicle Acceleration)

  • 주진윤;오흥운
    • 한국도로학회논문집
    • /
    • 제17권3호
    • /
    • pp.125-132
    • /
    • 2015
  • PURPOSES : The present study aims to evaluate the added $CO_2$ emissions incurred from accelerating operation when to increase the speed up to the allowed level. METHODS : The methodology used are basically the relationship between emission rates and vehicle speeds or acceleration rate. These rates together are used to calculate the added $CO_2$ emissions incurred from accelerating operation. RESULTS : It was resulted that the all the emission rates are increasing proportionally to vehicle speeds or acceleration rates. Additionally, it was also resulted that allowable speeds increasing, the added emission rates are increasing rapidly. CONCLUSIONS : It may be concluded that if the allowable speed ranges are managed, $CO_2$ emissions during vehicle operation are much reduced. From this reason, it was found that the allowable speed during highway design and operation would be much necessary

운행 휘발유 자동차의 배출가스검사 시스템 비교 (Comparision in Emission Inspection System of a Gasoline Vehicle in Service)

  • 오상엽;박원덕
    • 한국자동차공학회논문집
    • /
    • 제22권1호
    • /
    • pp.1-7
    • /
    • 2014
  • In the most of a nation, the safety and emission gas inspection system of a vehicle in service have been conducted with the most compatible inspection system according to its real environmental situation. Especially, the state of vehicle emission gas is measured by advanced emission gas inspection equipment. It has the problem that the decrease effect of an environmental pollution matter is not calculated by weight percent measurement type equipment. Therefore, in this study, the correlations for the results of emission gas measurement are analyzed by comparing a weight percent measurement type (IDLE+ASM2525 mode) and an advanced mass measurement type (IM240 mode). As the result, the selectivity of an emission gas by IM240 mode is higher than that by IDLE+ASM2525 mode. In the future, therefore, the introduction of IM240 mode and a mass measurement type equipment are necessary. Also, we need to prepare a vehicle emission gas inspection system for introducing IM240 mode.

운행차 열화특성을 고려한 제작차 배출가스 목표치 설정에 관한 연구 (A Study on the Target Values Fixing of Green Vehicle Emissions in Consideration of In-use Deterioration)

  • 김현우
    • 한국자동차공학회논문집
    • /
    • 제11권2호
    • /
    • pp.104-110
    • /
    • 2003
  • As exhaust emission standards are more stringent, higher conversion efficiency of automotive catalytic converter is required. In addition, catalytic converter is deteriorated during mileage accumulation of vehicle. Therefore the specification of catalytic converter should be decided in consideration of emission standards and deterioration. Because the decision of the specification of catalytic converter is required at the beginning of vehicle development procedure, it is important and necessary to fix the target values of green vehicle exhaust emissions. To do this, a linear regression analysis was done with in-use exhaust emissions data of 5 different kinds of vehicle that received US94 emission standards certification, and data handling methods including some statistical estimation were proposed. As a result, the fixed target values of NMHC, CO, NOx of green vehicle against US94 emission standards were 0.079, 0.83, 0.116, respectively. And expected in-use deterioration factor of NMHC, CO, NOx were 1.75, 2.02, 1.38, respectively. And also it was blown that even if failure rate is 30% after 80,000km driven, it might be sufficiently safe from emission failure confirmatory test of Korea. It is hopeful to make a database of in-use emissions to increase the confidence in correctness of the calculated target values.

도로 주행 중의 비출력 및 가속도 조건을 반영한 차속별 배출계수 연구 (Speed-Based Emission Factor regarding Vehicle Specific Power and Acceleration during On-road Driving)

  • 이태우;길지훈;박준홍;박용희;홍지형;이대엽
    • 한국자동차공학회논문집
    • /
    • 제19권1호
    • /
    • pp.73-81
    • /
    • 2011
  • The performance of emission factor has been validated by comparison with on-road test data. Emission factor, which is a function of vehicle speed, has been acquired based on chassis dynamometer test with NIER driving pattern. Portable Emission Measurement System, PEMS has measured on-road emission. Test vehicle was operated on defined test routes under different driving conditions, and made ten trips along its route. Emission factors properly simulate on-road test result, although there is some drawback to consider variety of driving condition on real world. Vehicle specific power and acceleration have been used to explain the distributed on-road result within same vehicle speed range. The trend in carbon dioxide and nitrogen oxide emission with respect to specific power and acceleration is clear. It has been found that specific power is a good explanatory variable for microscopic analysis for modal test result. Acceleration is good for microscopic as well as macroscopic analysis.

Sidewalk Gaseous Pollutants Estimation Through UAV Video-based Model

  • Omar, Wael;Lee, Impyeong
    • 대한원격탐사학회지
    • /
    • 제38권1호
    • /
    • pp.1-20
    • /
    • 2022
  • As unmanned aerial vehicle (UAV) technology grew in popularity over the years, it was introduced for air quality monitoring. This can easily be used to estimate the sidewalk emission concentration by calculating road traffic emission factors of different vehicle types. These calculations require a simulation of the spread of pollutants from one or more sources given for estimation. For this purpose, a Gaussian plume dispersion model was developed based on the US EPA Motor Vehicle Emissions Simulator (MOVES), which provides an accurate estimate of fuel consumption and pollutant emissions from vehicles under a wide range of user-defined conditions. This paper describes a methodology for estimating emission concentration on the sidewalk emitted by different types of vehicles. This line source considers vehicle parameters, wind speed and direction, and pollutant concentration using a UAV equipped with a monocular camera. All were sampled over an hourly interval. In this article, the YOLOv5 deep learning model is developed, vehicle tracking is used through Deep SORT (Simple Online and Realtime Tracking), vehicle localization using a homography transformation matrix to locate each vehicle and calculate the parameters of speed and acceleration, and ultimately a Gaussian plume dispersion model was developed to estimate the CO, NOx concentrations at a sidewalk point. The results demonstrate that these estimated pollutants values are good to give a fast and reasonable indication for any near road receptor point using a cheap UAV without installing air monitoring stations along the road.