• 제목/요약/키워드: vehicle dynamics data

검색결과 175건 처리시간 0.038초

EPS 제어시스템 장착 승용차의 통합적 시뮬레이션 기법 연구 (Simulation Integration Technique of a Full Vehicle Equipped with EPS Control System)

  • 장봉춘;소상균
    • 한국정밀공학회지
    • /
    • 제23권6호
    • /
    • pp.72-80
    • /
    • 2006
  • Electric Power Steering (EPS) mechanism has become widely equipped in passenger vehicle due to the increasing environmental concerns and higher fuel efficiency. This paper describes the development of concurrent simulation technique and simulation integration technique of EPS control system with a dynamic vehicle system. A full vehicle model interacting with EPS control algorithm was concurrently simulated on a single bump road condition. The dynamic responses of vehicle chassis and steering system resulting from road surface impact were evaluated and compared with proving ground experimental data. The comparisons show reasonable agreement on tie-rod load, rack displacement, steering wheel torque and tire center acceleration. This concurrent simulation capability was employed fur EPS performance evaluation and calibration as well as for vehicle handling performance integration and synthesis.

SUV - EPS 차량의 동시 시뮬레이션 기술 개발 및 시뮬레이션 통합 기술 개발 (Co-Simulation and Simulation Integration Technology Development for SUV Vehicle Equipped with Electric Power Steering (EPS))

  • B. C. Jang;Y. K. Eom
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.472-475
    • /
    • 2003
  • Electric Power Steering (EPS) mechanism has become widely equipped in passenger vehicle due to the environmental consciousness and higher fuel efficiency. This paper describes the development of co-simulation technique and simulation integration technique of EPS control system with dynamic vehicle model. A full vehicle model interacted with EPS control algorithm is concurrently simulated on a single bump road condition. Dynamic responses of vehicle chassis and steering system resulting from road surface impact are evaluated and compared with proving ground experimental data. The comparisons will show reasonable agreement on tie-rod load. rack displacement, handle-wheel torque and tire center acceleration. This developed simulation capability can be used for EPS performance evaluation and calibration as well as for vehicle handling performance integration and synthesis.

  • PDF

철도차량 안전기준을 만족하는 철도차량 내장재의 화재성능 시험 (Fire test for interior material satisfied with the guide for the safety of rail vehicle)

  • 박원희;이덕희;정우성
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2149-2153
    • /
    • 2008
  • A large-scale fire test was done for interior materials from a vehicle installed within a fire test room. The interior materials are satisfied with the Korean guide for the safety of rail vehicle. The guide has taken effect since December 2004 in Korea. Ignition source (gas burner) was increased in several controlled steps. The objectives of this test are to assess the fire performance in terms of ignition and flame spread on interior lining materials and to provide data on an enclosure fires involving train interior materials that grow to flashover. This data will be used to develop and calibrate an Fire Dynamics Simulator (FDS) model for fire growth on the interior vehicle.

  • PDF

룸코너 설비를 이용한 내장재 교체 전 철도차량의 화재성능 시험 (Fire Test for the railway vehicle before interior replacement in Room Corner)

  • 이덕희;박원희;정우성;이동찬
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 추계학술대회 논문집
    • /
    • pp.590-595
    • /
    • 2008
  • A large-scale fire test was done for interior materials from a vehicle installed within a fire test room. The interior materials are the old style before interior replacement by the Korean guideline for the safety of rail vehicle. Ignition source (gas burner) was increased in several controlled steps. The objectives of this test are to assess the fire performance in terms of ignition and flame spread on interior lining materials and to provide data on an enclosure fires involving train interior materials that grow to flashover. This data will be used to develop and calibrate an Fire Dynamics Simulator (FDS) model for fire growth on the interior vehicle.

  • PDF

A Symbolic Computation Method for Automatic Generation of a Full Vehicle Model Simulation Code for a Driving Simulator

  • Lee Ji-Young;Lee Woon-Sung
    • Journal of Mechanical Science and Technology
    • /
    • 제19권spc1호
    • /
    • pp.395-402
    • /
    • 2005
  • This paper deals with modeling and computer simulation of a full multibody vehicle model for a driving simulator. The multibody vehicle model is based on the recursive formulation and a corresponding simulation code is generated automatically from AUTOCODE, which is a symbolic computation package developed by the authors using MAPLE. The paper describes a procedure for automatically generating a highly efficient simulation code for the full vehicle model, while incorporating realistically modeled components. The following issues have been accounted for in the procedure, including software design for representing a mechanical system in symbolic form as a set of computer data objects, a multibody formulation for systems with various types of connections between bodies, automatic manipulation of symbolic expressions in the multibody formulation, interface design for allowing users to describe unconventional force-and torque-producing components, and a method for accommodating external computer subroutines that may have already been developed. The effectiveness and efficiency of the proposed method have been demonstrated by the simulation code developed and implemented for driving simulation.

Orbit Determination and Maneuver Planning for the KOMPSAT Spacecraft in Launch and Early Orbit Phase Operation

  • Lee, Byung-sun;Lee, Jeong-Sook;Won, Chang-Hee;Eun, Jong-Won;Lee, Ho-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1999년도 제14차 학술회의논문집
    • /
    • pp.29-32
    • /
    • 1999
  • Korea Multi-Purpose SATellite(KOMPSAT) is scheduled to be launched by TAURUS launch vehicle in November, 1999. Tracking, Telemetry and Command(TT&C) operation and the flight dynamics support should be performed for the successful Launch and Early Orbit Phase(LEOP) operation. After the first contact of the KOMPSAT spacecraft, initial orbit determination using ground based tracking data should be performed for the acquisition of the orbit. Although the KOMPSAT is planned to be directly inserted into the Sun- synchronous orbit of 685 km altitude, the orbit maneuvers are required fur the correction of the launch vehicle dispersion. Flight dynamics support such as orbit determination and maneuver planning will be performed by using KOMPSAT Mission Analysis and Planning Subsystem(MAPS) in KOMPSAT Mission Control Element(MCE). The KOMPSAT MAPS have been jointly developed by Electronics and Telecommunications Research Institute(ETRI) and Hyundai Space & Aircraft Company(HYSA). The KOMPSAT MCE was installed in Korea Aerospace Research Institute(KARI) site for the KOMPSAT operation. In this paper, the orbit determination and maneuver planning are introduced and simulated for the KOMPSAT spacecraft in LEOP operation. Initial orbit determination using short arc tracking data and definitive orbit determination using multiple passes tracking data are performed. Orbit maneuvers for the altitude correction and inclination correction are planned for achieving the final mission orbit of the KOMPSAT.

  • PDF

MULTI-SENSOR DATA FUSION FOR FUTURE TELEMATICS APPLICATION

  • Kim, Seong-Baek;Lee, Seung-Yong;Choi, Ji-Hoon;Choi, Kyung-Ho;Jang, Byung-Tae
    • Journal of Astronomy and Space Sciences
    • /
    • 제20권4호
    • /
    • pp.359-364
    • /
    • 2003
  • In this paper, we present multi-sensor data fusion for telematics application. Successful telematics can be realized through the integration of navigation and spatial information. The well-determined acquisition of vehicle's position plays a vital role in application service. The development of GPS is used to provide the navigation data, but the performance is limited in areas where poor satellite visibility environment exists. Hence, multi-sensor fusion including IMU (Inertial Measurement Unit), GPS(Global Positioning System), and DMI (Distance Measurement Indicator) is required to provide the vehicle's position to service provider and driver behind the wheel. The multi-sensor fusion is implemented via algorithm based on Kalman filtering technique. Navigation accuracy can be enhanced using this filtering approach. For the verification of fusion approach, land vehicle test was performed and the results were discussed. Results showed that the horizontal position errors were suppressed around 1 meter level accuracy under simulated non-GPS availability environment. Under normal GPS environment, the horizontal position errors were under 40㎝ in curve trajectory and 27㎝ in linear trajectory, which are definitely depending on vehicular dynamics.

주행 시험 데이터를 이용한 저가형 차량시물레이터의 조향감 재현 장치 구현 (Development of A Haptic Steering System for a Low Cost Vehicle Simulator using Proving Ground Test Data)

  • 김성수;정상윤;이창호
    • 한국자동차공학회논문집
    • /
    • 제13권2호
    • /
    • pp.37-43
    • /
    • 2005
  • A haptic steering system which reflects steering reaction torque has been developed for a fixed base vehicle simulator. The haptic steering system consists of a steering effort sensor, MR-clutch, AC servo motor and controller. In order to generate realistic steering torque feel to driver and at the same time to meet real-time simulation requirement, 3D torque map is constructed by experimental data and torque generation algorithm using the torque map has been also developed. 3D torque map is constructed using curve fitting and interpolation of the measured values of the steering angle, velocity and steering torque from actual slalom test on the proving ground. In order to carry out performance test of the developed haptic steering system, a fixed based vehicle simulator is constructed by integrating real time vehicle dynamics module, VR-video/audio module, and the haptic steering system. Steering torque and steering angle curves have been obtained from virtual testing in the vehicle simulator and performance of the haptic steering system has been evaluated.

사출 차량에서의 외란을 이용한 정밀 지향성 향상 연구 (A Study on Improvement of Aiming ability using Disturbance Measurement in the Firing Vehicle)

  • 유진호;이동주
    • 한국추진공학회지
    • /
    • 제11권2호
    • /
    • pp.62-70
    • /
    • 2007
  • 지향성능은 발사차량의 정확성에 있어서 중요한 요소이다. 본 연구는 외란 가속도를 이용하여 지향구조물의 진동을 감지하는 방안과 실험 결과에 대하여 기술하였다. 주행 중 발생하는 진동 경향을 분석하기 위하여 가속도 자료를 이동평균과 힐버트 변환을 이용하여 신호 처리하였다. 다양한 외란에 대하여 가속도의 모드 계수를 얻었으며, 차량속도, 노면조건, 지향구조물의 특성을 차량 동특성의 진동을 변화시키는 요소로 간주하였다. 마지막으로 다양한 주행 조건의 진동 신호를 분류하기 위한 패턴인식에 역전파 신경망 이론을 이용하였다. 각 조건에 대하여 실험 결과를 비교 분석하였다.

Drag reduction of a rapid vehicle in supercavitating flow

  • Yang, D.;Xiong, Y.L.;Guo, X.F.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제9권1호
    • /
    • pp.35-44
    • /
    • 2017
  • Supercavitation is one of the most attractive technologies to achieve high speed for underwater vehicles. However, the multiphase flow with high-speed around the supercavitating vehicle (SCV) is difficult to simulate accurately. In this paper, we use modified the turbulent viscosity formula in the Standard K-Epsilon (SKE) turbulent model to simulate the supercavitating flow. The numerical results of flow over several typical cavitators are in agreement with the experimental data and theoretical prediction. In the last part, a flying SCV was studied by unsteady numerical simulation. The selected computation setup corresponds to an outdoor supercavitating experiment. Only very limited experimental data was recorded due to the difficulties under the circumstance of high-speed underwater condition. However, the numerical simulation recovers the whole scenario, the results are qualitatively reasonable by comparing to the experimental observations. The drag reduction capacity of supercavitation is evaluated by comparing with a moving vehicle launching at the same speed but without supercavitation. The results show that the supercavitation reduces the drag of the vehicle dramatically.